The coupled dark state magnetometer (CDSM) is an optically pumped scalar magnetometer, which is based on two-photon spectroscopy of free alkali atoms. This paper introduces the measurement principle, instrument design, required resources and key performance characteristics of the flight model for the China Seismo-Electromagnetic Satellite, which is the first demonstration of the CDSM measurement principle in space. The CDSM uses several coherent population trapping (CPT) resonances in parallel in order to reduce systematic errors, e.g. the sensor temperature dependence. Overall five control loops were identified to enable a reliable operation. As known so far CPT is the only effect in optical magnetometry which inherently enables omni-directional, dead-zone-free measurements. This leads to a simple all-optical sensor design without double cell units, excitation coils or electromechanical parts. The instrument is characterized by an accuracy of 0.19 nT (σ), a detection noise of 50 pTrms at 1 s integration time, a mass of 1672 g and an in-Earth orbit measured power consumption of 3394 mW.
Abstract. The classic approach to calculate the electrostatic field penetration, from the Earth's surface into the ionosphere, is to consider the following equation ∇· σ ·∇ =0 whereσ and are the electric conductivity and the potential of the electric field, respectively. The penetration characteristics strongly depend on the conductivities of atmosphere and ionosphere. To estimate the electrostatic field penetration up to the orbital height of DEMETER satellite (about 700 km) the role of the ionosphere must be analyzed. It is done with help of a special upper boundary condition for the atmospheric electric field. In this paper, we investigate the influence of the ionospheric conductivity on the electrostatic field penetration from the Earth's surface into the ionosphere.We show that the magnitude of the ionospheric electric field penetrated from the ground is inverse proportional to the value of the ionospheric Pedersen conductance. So its typical value in day-time is about hundred times less than in night-time.
Abstract. This work presents ground based Ultra Low Frequency (ULF) magnetic field measurements in the frequency range from 10-15 mHz from 1 January 2008 to 14 April 2009. In this time period a strong earthquake series hit the Italian Abruzzo region around L'Aquila with the main stroke of magnitude M = 6.3 on 6 April 2009. In the frame of the South European Geomagnetic Array (SEGMA), a European collaboration runs ULF fluxgate instruments providing continuously magnetic field data recorded in mid-and south Europe. The main scientific objective is the investigation of signal variations due to seismic activity and the discrimination between other natural and human influences. The SEGMA station closest to the L'Aquila earthquake epicenter is L'Aquila observatory located in the epicenter region. For the scientific analysis we extract the nighttime period from 22:00-02:00 UT and determine the power spectral density (PSD) of the horizontal (H ) and vertical (Z) magnetic field components and the standardized polarization ratio (Z) over (H ). To discriminate local emissions from global geomagnetic effects, data from three SEGMA stations in distances up to 630 km from the epicenter region are analyzed and further compared to the independent global geomagnetic K p index. Apart from indirect ionospheric effects, electromagnetic noise could be originated in the lithosphere due to tectonic mechanisms in the earthquake focus. To estimate Correspondence to: G. Prattes (gustav.prattes@oeaw.ac.at) the amplitude of assumed lithospheric electromagnetic noise emissions causing anomalies in the PSD of the (Z) component, we consider magnetotelluric calculations of the electric crust conductivity in the L'Aquila region. Results found at L'Aquila observatory are interpreted with respect to the lithosphere electrical conductivity in the local observatory region, the K p index, and further in a multi station analysis. Possible seismic related ULF anomalies occur ∼2 weeks before the main stroke.
Abstract. Several investigations reported the possible identification of anomalous geomagnetic field signals prior to earthquake occurrence. In the ULF frequency range, candidates for precursory signatures have been proposed in the increase in the noise background and polarization parameter (i.e. the ratio between the amplitude/power of the vertical component and that one of the horizontal component), in the changing characteristics of the slope of the power spectrum and fractal dimension, in the possible occurrence of short duration pulses. We conducted, with conventional techniques of data processing, a preliminary analysis of the magnetic field observations performed at L'Aquila during three months preceding the 6 April 2009 earthquake, focusing attention on the possible occurrence of features similar to those identified in previous events. Within the limits of this analysis, we do not find compelling evidence for any of the features which have been proposed as earthquake precursors: indeed, most of aspects of our observations (which, in some cases, appear consistent with previous findings) might be interpreted in terms of the general magnetospheric conditions and/or of different sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.