This article reviews photoemission experiments that simultaneously resolve at least two of the following degrees of freedom: space (real and momentum space), time (intrinsic time scale of a fast experiment or time-of-flight) and spin. In the spatiotemporal domain, imaging of fast processes by PEEM gives direct insight into plasmon dynamics or magnetization processes. In the category real space & spin the novel concept of imaging spin filters is discussed. In the time & spin chapter we address time-of-flight spin detectors and ultrafast spin processes that are accessible by pump-and-probe techniques. A main part of the paper is devoted to the resolution of momentum-space & time. This is implemented in form of the time-of-flight momentum microscope, a very recent development of which the first instrument has been in operation since 2014. In an extended outlook chapter, the potential of new developments and of a novel, highly parallelized delay-line type electron detector will be discussed. The combination of all three degrees of freedom k-space, time & spin is emerging through the combination of the ToF momentum microscope with imaging spin filter.
Outline
A highly effective way to cope with the weak signals in hard X-ray angular-resolved photoelectron spectroscopy is introduced. Full-field momentum imaging combined with time-of-flight parallel energy recording constitute a 3D recording scheme, gaining two orders of magnitude in detection efficiency.
The complex structure of the diamond nucleation layer on iridium has been studied by X-ray absorption near edge structure (XANES) in combination with X-ray photoemission electron microscopy (X-PEEM). In contrast to all other substrate materials, on iridium the diamond nuclei formed by the bias enhanced nucleation (BEN) procedure gather in islands (“domains”) with micron-size lateral dimensions. Laterally resolved XANES spectra of the carbon-K absorption edge clearly show the difference in carbon bonding structure outside and inside the domain area. A positive feedback mechanism for the nucleation and lateral crystal growth are two alternative concepts which can explain the domain formation.
A new method for the actinic at-wavelength inspection of defects inside and ontop of Extreme Ultraviolet Lithography (EUVL) multilayer-coated mask blanks is presented. The experimental technique is based on PhotoElectron Emission Microscopy (PEEM) supported by the generation of a standing wave field inside and above the multilayer mask blank when illuminated near the resonance Bragg wavelength at around 13.5 nm wavelength. Experimental results on programmed defect samples based on e-beam lithographic structures or PSL equivalent silica balls overcoated with an EUV multilayer show that buried defects scaling down to 50 nm in lateral size are detectable with further scalability down to 30 nm and smaller due to the PEEM´s instrumental performance. Furthermore, phase structures as shallow as 6 nm in height on a programmed phase grating sample has been detected by this technique. The visibility of the phase defect structures has been shown to be strongly dependent on and controlled by the phase of the standing wave field at the mask blank surface and thus can be optimized by tuning the illumination wavelength between 12.5 nm and 13.8 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.