Thrust measurements were performed on a coil made of YBa 2 Cu 3 O 7-未 coated conductor acting as the excitation system of a single-sided linear synchronous motor. The superconducting coil was a single pancake in the shape of a racetrack with 100 turns, the width and effective lengths were 42 mm and 84 mm, respectively. The stator was made of conventional copper wire. At 77 K and a gap of 10 mm, with an operating direct current of I DC =30 A for the superconducting coil and alternating current of I AC =9 A for the stator coils, thrust of 24 N was achieved. With addition of an iron core, thrust was increased by 49%. With addition of an iron back plate, thrust was increased by 70%.
Four coils made of YBCO-coated conductor wire were fabricated and connected in series to make up the excitation system of a linear synchronous motor system with a stator made of ordinary copper wire. The electromagnetic forces experienced by the superconducting coils with respect to the stator were studied in the static case. We began with the study of one single coil, followed by two coils connected in series, and finally, four coils in series from which the largest force obtained was of 53.9 N at a gap of 10 mm at 77 K. The critical current, n-value, and inductance were also measured for the coils so that the power dissipation of the field windings can be calculated. This paper also helps us understand whether linear motors with superconducting components are currently economically feasible with present commercially available superconducting wire.
The stable levitation above permanent magnet is an important characteristic of the bulk high-T c superconductor (HTS). When an external force pushes the bulk HTS up, down or sideways, or tries to tilt it, a restoring force can return it to its initial position. The HTS Maglev relied on this characteristic can overcome the external force from wind or pass the curve lines successfully. The change of guidance force (GF) during many times lateral movement is studied. Experiments show that GF increases during the lateral movement, no matter what kind of PMG or HTS is used, and the change of the GF slows down after 5 times lateral movement. The pre-load method can reduce the levitation force decay during lateral movement. So the influence of GF by the pre-load method is needed to be studied. It is found that the pre-load method can increase GF and reduce the change of the GF during lateral movement. The Halbach permanent magnetic guideway (PMG) can offer much more GF but the change is larger just as the levitation force decays. The GF of cylindrical bulk HTS increases more than of the rectangular bulk HTS in the pre-load case. The characteristics of the GF during the lateral movement are explained. These results are important for further HTS Maglev vehicle system designs.
This paper reviews the advantages of replacing the mechanical bearings of low-temperature pumps by radial high-temperature superconductor (HTS) bearings. Radial HTS bearings have the advantage of being non-abrasive, so that the working life is increased significantly. In this article, two types of liquid nitrogen pump with radial HTS bearings are proposed. To reduce heat leakage, one pump uses a permanent magnet (PM) coupling and the other uses a long hollow pipe coupling. Successful stable operation of these two pumps means that radial HTS bearings have the potential to be applied in liquid nitrogen pumps. Test results show that the flow rate is influenced mainly by rotational speed but not by the coupling component. Further designs of the two types of pump for practical applications are described, and their characteristics are analyzed: the pump with a PM coupling has lower heat leakage, whereas the pump with a long hollow pipe coupling can solve the force creep problem of the HTS bearing. The design of the pump with a long hollow pipe coupling is based on the pump that is already in practical use, and therefore has greater feasibility for practical applications. Finally, improvements of the liquid nitrogen pump by improving the structure of the pump and the performance of the radial HTS bearing are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.