We fabricated and experimentally studied a wideband metamaterial comprising a 2D array of annular antennas with Superconductor-Insulator-Normal metal-Insulator-Superconductor (SINIS) bolometers. The annular antenna array metamaterial was designed for a frequency range of 300–450 GHz and consists of periodically arranged electrically small rings, each containing two or four SINIS bolometers connected in series or parallel. These periodic structures with a unit cell size of about one-tenth of a wavelength act as a distributed absorber and receive two orthogonal polarizations. The unit’s small cell size provides a higher density of bolometers and therefore increases the bandwidth and the dynamic range of a single pixel. Theoretical estimates at a central frequency of 345 GHz yield absorption efficiencies of over 80% of the incident RF power within the 300–450 GHz frequency range. The average absorption by the metamaterial matrix in the given frequency band is at least twice as high in comparison to the half-wave circle matrix. We measured the optical response at sample temperatures as low as 100 mK using a quasi-optical setup that consisted of an immersion sapphire lens, bandpass mesh filters, and a variable temperature cryogenic blackbody radiation source. The measured series array voltage responsivity was 1.3 × 109 V/W for radiation temperatures ranging from 2 K to 7.5 K. The current responsivity for the parallel array was 2.4 × 104 A/W at a bath temperature of 100 mK. The spectral response was measured in a 240–370 GHz range with a Backward Wave Oscillator radiation source. The measured equivalent temperature sensitivity could be reduced to 100 μK/Hz1/2 at a 2.7 K radiation temperature level, a value that is suitable for anisotropy measurements in cosmic microwave background radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.