Maintaining multivariate calibrations is essential and involves keeping models developed on an instrument applicable to predicting new samples over time. Sometimes a primary instrument model is needed to predict samples measured on secondary instruments. This situation is referred to as calibration transfer. This paper reports on using a Tikhonov regularization (TR) based method in both cases. A distinction of the TR design for calibration maintenance and transfer is a defined weighting scheme for a small set of new (transfer or standardization) samples augmented to the full set of calibration samples. Because straight application of basic TR theory is not always possible with calibration maintenance and transfer, this paper develops a generic solution to always enable application of TR. Harmonious (bias/variance tradeoff) and parsimonious (effective rank) considerations for TR are compared with the same TR format applied to partial least squares (PLS), showing that both approaches are viable solutions to the calibration maintenance and transfer problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.