Masonry arches are vulnerable to seismic actions. Over the last few years, extensive research has been carried out to develop strategies and methods for their seismic assessment and strengthening. The application of constant horizontal accelerations to masonry arches is a well-known quasi-static method, which approximates dynamic loading effects and quantifies their stability, while tilting plane testing is a cheap and effective strategy for experimentation of arches made of dry-stack masonry. Also, the common strengthening techniques for masonry arches are mainly focusing on achieving full strength of the system rather than stability. Through experimentation of a dry-stack masonry arch it has been shown that the capacity of an arch can be increased, and the failure controlled by defining hinge positions through reinforcement. This paper utilizes experimentally obtained results to introduce:(1) static friction and resulting mechanisms; and (2) the post-minimum mechanism reinforcement requirements into the two-dimensional limit analysis-based kinematic collapse load calculator (KCLC) software designed for the static seismic analysis of dry-stack masonry arches. Computational results are validated against a series of experimental observations based on tilt plane tests and good agreement is obtained. Discrete Element models to represent the masonry arch with different hinge configurations are also developed to establish a validation trifecta. The limiting mechanism to activate collapse of arches subjected to hinge control is investigated and insights into the optimal reinforcement to be installed in the arch are derived. It is envisaged that the current modelling approach can be used by engineers to understand stability under horizontal loads and develop strengthening criteria for masonry arches of their care.
The seismic vulnerability and resulting damages to vaulted masonry is continuously observed with each new earthquake. The understanding of these systems is quite strong, and reinforcement strategies and techniques are continually advancing. Unfortunately, the application of reinforcement is typically applied in a way that the failure transforms directly from one of stability to strength. This direct transformation overlooks the potential behaviors of the system that exist between the two limits. To investigate and better understand the intermittent behavior of masonry arches, an in-scale dry joint masonry arch subjected to hinge control and a tilting plane loading condition was experimentally tested. The result of that experimentation revealed that the capacity can be increased and the failure defined, but the non-ideal conditions of slip and base deformations were observed as well. This work presents the second experimental campaign of a full-scale dry stack masonry arch subjected to hinge control and a tilting plane loading condition. In this campaign, the issue of slip is addressed in the arch construction, and the results show that the capacity of the full-scale arch can be increased and the failure defined.
This work argues the potential to reintroduce stability-based design techniques associated with unreinforced masonry into the modern architect's vocabulary and structural engineer's skillset by introducing a theoretical reinforcement technique that removes the assumption of no slippage, transforms the loss of stability into a linear elastic failure, and maintains the unreinforced behaviour of masonry prior to the loss of stability. Limiting the scope to a semi-circular arch loaded with an asymmetric point load and applying the traditional masonry assumptions, a theoretical argument for a linear relationship between loading beyond stability, hinge rotations and an applied hinge resistance is developed. Then an innovative reinforcement technique utilising fibre reinforced polymers and the argued linearities is presented that removes the assumption of no slippage, transforms the loss of stability into a linearly elastic failure, and minimises its influence on the stable system. This technique is termed reinforced stability based design (RSBD). This work then looks at the application of the RSBD to the semi-circular arch, including numerical investigations into the various parameters that affect the developed linear relationship. Finally, a discussion on the potential to develop a generic and effective structural health monitoring for the RSBD arch is presented
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.