Methylene Blue (MB) has been widely used in antimicrobial Photodynamic Therapy (aPDT), however, the mechanisms of action (Type I or Type II) are defined by its state of aggregation. In this sense, the identification of the relationships between aggregation, the mechanisms of action and the effectiveness against microorganisms, as well as the establishment of the means and the formulations that may favor the most effective mechanisms, are essential. Thus, the objective of this study was to assess the in vitro aPDT efficacies against Candida albicans, by using MB in vehicles which may influence the aggregation and present an oral formulation (OF) containing MB, to be used in clinical aPDT procedures. The efficacy of MB at 20 mg L-1 was tested in a range of vehicles (water, physiological solution - NaCl 0.9%, phosphate saline buffer - PBS, sodium dodecyl sulfate 0.25% - SDS and urea 1 mol L-1) in a C. albicans planktonic culture, when using 4.68 J cm-2 of 640 ± 12 nm LED for the irradiations, as well as 5 minutes of pre-irradiation time, together with measuring the UFC mL-1. Based upon these analyses, an OF containing MB in the most effective vehicle was tested in the biofilms, as a proposal for clinical applications. When comparing some of the vehicles, sodium dodecyl sulfate was the only one that enhanced an MB aPDT efficacy in a planktonic C. albicans culture. This OF was tested in the biofilms and 50 mg L-1 MB was necessary, in order to achieve some reduction in the cell viabilities after the various treatments. The light dosimetries still need further adaptations, in order for this formulation to be used in clinical applications. The present research has indicated that the development of this formulation for the control of MB aggregations may result in more effective clinical protocols.
BackgroundIn intensive care units (ICUs), nosocomial infections are prevalent conditions and they have been related to high mortality indexes. Some studies have suggested that inefficient oral hygiene and ventilator-associated pneumonia (VAP) are related. Nowadays, in the Brazilian public health system there is no well-defined protocol for oral hygiene in an ICU. Due to the drawbacks of the use of antibiotics, photodynamic therapy (PDT) has emerged as an interesting technique in order to reduce antimicrobial-resistant pathogens. Methylene blue (MB) is the most common chemical agent for PDT in Brazil. However, new formulations for improved effectiveness are still lacking. The objective of this study is to evaluate the use of an MB mouthwash as an effective oral-hygiene procedure in an ICU and to show that oral hygiene using PDT with MB mouthwash may reduce VAP frequency to rates similar to, or higher than, chlorhexidine.MethodsPhase 1 will evaluate the most effective cleaning procedure, while phase 2 will correlate oral hygiene to VAP incidence. At the start of phase 1, the ICU patients will be randomly allocated into three different groups (10 patients/group): the efficacy of chlorhexidine, classical MB-PDT, and mouthwash MB-PDT will all be measured for the quantification of viable bacteria, both pre- and post-treatment, by a Reverse Transcription Polymerase Chain Reaction (RT-PCR). In phase 2, the most effective procedure found in phase 1 and a mechanical cleaning with filtered water will be carried out daily, once a day, over 5 days, with a total of 52 ICU patients randomly allocated into the two groups. The clinical records will be evaluated in order to find any pneumonic diagnoses.DiscussionSince a variety of bacterial species are related to VAP, a universal primer for bacteria will be used in order to quantify the total bacteria count in the participants’ samples. In order to quantify only the living bacteria before DNA extraction, the samples will be treated with propidium monoazide. This will infiltrate the dead bacteria and will intercalate the DNA bases, avoiding their DNA amplification. This will be the first trial to evaluate MB-PDT in a mouthwash formula that can increase the effectiveness due to the control of MB aggregation. The results of this study will be able to generate an easy and low-cost protocol to be used in an ICU for the Brazilian public health system.Trial registrationThis protocol was approved by the Research Ethics Committee of the Conjunto Hospitalar do Mandaqui (1.317.834, CAAE: 49273515.9.3001.5551) and it was registered in Registro Brasileiro de Ensaios Clínicos (ReBEC number: RBR-94bvrc;). First received: 12 July 2015; 1st version 6 June 2016. Data will be published in a peer-reviewed journal.Electronic supplementary materialThe online version of this article (doi:10.1186/s13063-017-2133-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.