Species of the fungal genus Candida, can cause oral candidiasis especially in immunosuppressed patients. Many studies have investigated the use of photodynamic therapy (PDT) to kill fungi in vitro, but this approach has seldom been reported in animal models of infection. This study investigated the effects of PDT on Candida albicans as biofilms grown in vitro and also in an immunosuppressed mouse model of oral candidiasis infection. We used a luciferase-expressing strain that allowed noninvasive monitoring of the infection by bioluminescence imaging. The phenothiazinium salts, methylene blue (MB) and new methylene blue (NMB) were used as photosensitizers (PS), combined or not with potassium iodide (KI), and red laser (660 nm) at four different light doses (10J, 20J, 40J and 60J). The best in vitro log reduction of CFU/ml on biofilm grown cells was: MB plus KI with 40J (2.31 log; p < 0.001); and NMB without KI with 60J (1.77 log; p < 0.001). These conditions were chosen for treating the in vivo model of oral Candida infection. After 5 days of treatment the disease was practically eradicated, especially using MB plus KI with 40J. This study suggests that KI can potentiate PDT of fungal infection using MB (but not NMB) and could be a promising new approach for the treatment of oral candidiasis.
Candida albicans is an opportunistic yeast that can cause oral candidosis through the formation of a biofilm, an important virulence factor that compromises the action of antifungal agents. The objective of this study was to compare the effect of rose bengal (RB)- and eosin Y (EY)-mediated photodynamic inactivation (PDI) using a green light-emitting diode (LED; 532 ± 10 nm) on planktonic cells and biofilms of C. albicans (ATCC 18804). Planktonic cultures were treated with photosensitizers at concentrations ranging from 0.78 to 400 μM, and biofilms were treated with 200 μM of photosensitizers. The number of colony-forming unit per milliliter (CFU/mL) was compared by analysis of variance and Tukey's test (P ≤ 0.05). After treatment, one biofilm specimen of the control and PDI groups were examined by scanning electron microscopy. The photosensitizers (6.25, 25, 50, 200, and 400 μM of EY, and 6.25 μM of RB or higher) significantly reduced the number of CFU/mL in the PDI groups when compared to the control group. With respect to biofilm formation, RB- and EY-mediated PDI promoted reductions of 0.22 log10 and 0.45 log10, respectively. Scanning electron microscopy showed that the two photosensitizers reduced fungal structures. In conclusion, EY- and RB-mediated PDI using LED irradiation significantly reduced C. albicans planktonic cells and biofilms.
Methylene Blue (MB) has been widely used in antimicrobial Photodynamic Therapy (aPDT), however, the mechanisms of action (Type I or Type II) are defined by its state of aggregation. In this sense, the identification of the relationships between aggregation, the mechanisms of action and the effectiveness against microorganisms, as well as the establishment of the means and the formulations that may favor the most effective mechanisms, are essential. Thus, the objective of this study was to assess the in vitro aPDT efficacies against Candida albicans, by using MB in vehicles which may influence the aggregation and present an oral formulation (OF) containing MB, to be used in clinical aPDT procedures. The efficacy of MB at 20 mg L-1 was tested in a range of vehicles (water, physiological solution - NaCl 0.9%, phosphate saline buffer - PBS, sodium dodecyl sulfate 0.25% - SDS and urea 1 mol L-1) in a C. albicans planktonic culture, when using 4.68 J cm-2 of 640 ± 12 nm LED for the irradiations, as well as 5 minutes of pre-irradiation time, together with measuring the UFC mL-1. Based upon these analyses, an OF containing MB in the most effective vehicle was tested in the biofilms, as a proposal for clinical applications. When comparing some of the vehicles, sodium dodecyl sulfate was the only one that enhanced an MB aPDT efficacy in a planktonic C. albicans culture. This OF was tested in the biofilms and 50 mg L-1 MB was necessary, in order to achieve some reduction in the cell viabilities after the various treatments. The light dosimetries still need further adaptations, in order for this formulation to be used in clinical applications. The present research has indicated that the development of this formulation for the control of MB aggregations may result in more effective clinical protocols.
Biofilm formation is one of the most important attributes for virulence in Candida species and contributes to increased resistance to antifungal drugs and host immune mechanisms. These features have led to the development of several methodologies to reproduce a sessile community in vitro that can be used to study the development of a biofilm, its interaction with other microorganisms and the environment, and its susceptibility to available antifungal agents and also to search for new therapy strategies. The purpose of this review is to describe the most commonly used methods to study Candida biofilms in vitro, to discuss the benefits and limitations of the different methods to induce biofilm formation, and to analyse the architecture, viability and growth kinetics of Candida biofilms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.