Prader-Willi syndrome (PWS) is a neurodevelopmental genetic disorder characterized by intellectual disabilities and insatiable appetite with compulsive eating leading to severe obesity with detrimental health consequences. Transcranial direct current stimulation (tDCS) has been shown to modulate decision-making and cue-induced food craving in healthy adults. We conducted a pilot double blind, sham-controlled, multicenter study of tDCS modulation of food drive and craving in 10 adult PWS participants, 11 adult obese (OB) and 11 adult healthy-weight control (HWC) subjects. PWS and OB subjects received five consecutive daily sessions of active or sham tDCS over the right dorsolateral prefrontal cortex (DLPFC), while HWC received a single sham and active tDCS in a crossover design. Standardized psychometric instruments assessed food craving, drive and hyperphagia by self-report and caregiver assessment over 30 days. Robust baseline differences were observed in severity scores for the Three-Factor Eating Questionnaire (TFEQ) and Dykens Hyperphagia Questionnaire (DHQ) for PWS compared to HWC while obese participants were more similar to HWC. Active tDCS stimulation in PWS was associated with a significant change from baseline in TFEQ Disinhibition (Factor II) (Ƶ = 1.9, P < 0.05, 30 days) and Total Scores (Ƶ = 2.3, P < 0.02, 30 days), and participant ratings of the DHQ Severity (Ƶ = 1.8, P < 0.06, 5 days) and Total Scores (Ƶ = 1.9, P < 0.05, 15 days). These findings support sustained neuromodulatory effects and efficacy of tDCS to reduce food drive and behaviors impacting hyperphagia in PWS. Transcranial direct current stimulation may represent a straight-forward, low risk and low cost method to improve care, management and quality of life in PWS.
The aim of this article is to evaluate the neuroplastic changes associated with chronic neuropathic pain following burn injury and modulation feasibility using transcranial direct current stimulation (tDCS). This is a crossover, double-blinded case series involving three patients with chronic neuropathic pain following burn injury. Participants were randomly assigned to undergo single sessions of both sham and active anodal tDCS over the primary motor cortex, contralateral to the most painful site. Excitability of the motor cortex was assessed before and after each stimulation session with the use of transcranial magnetic stimulation. An overall decrease in cortical excitability was seen after active tDCS only, as characterized by a decrease in intracortical facilitation and amplitude of motor evoked potentials and an increase in intracortical inhibition. Clinical outcomes did not change after a single session of tDCS. Results are consistent with previous studies showing that patients with chronic neuropathic pain have defective intracortical inhibition. This case series shows early evidence that chronic pain following burn injury may share similar central neural mechanisms, which could be modulated using tDCS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.