BackgroundObesity is associated with mobility reduction due to mechanical factors and excessive body fat. The six-minute walk test (6MWT) has been used to assess functional capacity in severe obesity.ObjectiveTo determine the association of BMI, total and segmental body composition with distance walked (6MWD) during the six-minute walk test (6MWT) according to gender and obesity grade.SettingUniversity of São Paulo Medical School, Brazil; Public Practice.MethodsFunctional capacity was assessed by 6MWD and body composition (%) by bioelectrical impedance analysis in 90 patients.ResultsThe mean 6MWD was 514.9 ± 50.3 m for both genders. The male group (M: 545.2 ± 46.9 m) showed a 6MWD higher (p = 0.002) than the female group (F: 505.6 ± 47.9 m). The morbid obese group (MO: 524.7 ± 44.0 m) also showed a 6MWD higher (p = 0.014) than the super obese group (SO: 494.2 ± 57.0 m). There was a positive relationship between 6MWD and fat free mass (FFM), FFM of upper limps (FFM_UL), trunk (FFM_TR) and lower limbs (FFM_LL). Female group presented a positive relationship between 6MWD and FFM, FFM_UL and FFM_LL and male group presented a positive relationship between 6MWD and FFM_TR. In morbid obese group there was a positive relationship between 6MWD with FFM, FFM_UL, FFM_TR and FFM_LL. The super obese group presented a positive relationship between 6MWD with FFM, FFM_TR and FFM_LL.ConclusionsTotal and segmental FFM is associated with a better walking capacity than BMI.
OBJECTIVE:The aim of our study was to evaluate associations between maximum voluntary contraction torques of the lower limbs and body composition for subjects with severe obesity.METHODS:Body composition was evaluated by bioelectrical impedance analysis, and maximum voluntary contraction torques of the lower limbs were measured using an isokinetic dynamometer. One hundred thirty-two patients were enrolled (100 females and 32 males). Eighty-seven patients had a body mass index between 40 and 49.9 kg/m2 (the A group), and 45 patients had a body mass index between 50 and 59.9 kg/m2 (the B group).RESULTS:Absolute extension and flexion torques had weak associations with fat-free mass but a moderate association with absolute extension torque and fat-free mass of the lower limbs. There were no significant differences between the A and B groups with respect to absolute extension and flexion torques. For the A group, absolute extension and flexion torques were moderately associated with fat-free mass and with fat-free mass of the lower limbs. For the B group, there were only moderate associations between absolute extension and flexion torques with fat-free mass of the lower limbs.CONCLUSIONS:Our findings demonstrate that both groups exhibited similar absolute torque values. There were weak to moderate associations between absolute extension and flexion torques and fat-free mass but a moderate association with fat-free mass of the lower limbs. Individuals with severe obesity should strive for greater absolute torques, fat-free mass and especially fat-free mass of the lower limbs to prevent functional limitations and physical incapacity.
Background: Body mass index (BMI) has some limitations for nutritional diagnosis since it does not represent an accurate measure of body fat and it is unable to identify predominant fat distribution. Aim: To develop a BMI based on the ratio of trunk mass and height. Methods: Fifty-seven patients in preoperative evaluation to bariatric surgery were evaluated. The preoperative anthropometric evaluation assessed weight, height and BMI. The body composition was evaluated by bioimpedance, obtaining the trunk fat free mass and fat mass, and trunk height. Trunk BMI (tBMI) was calculated by the sum of the measurements of the trunk fat free mass (tFFM) and trunk fat mass (tFM) in kg, divided by the trunk height squared (m2)). The calculation of the trunk fat BMI (tfBMI) was calculated by tFM, in kg, divided by the trunk height squared (m2)). For the correction and adjustment of the tBMI and tfBMI, it was calculated the relation between trunk extension and height, multiplying by the obtained indexes. Results: The mean data was: weight 125.3±19.5 kg, height 1.63±0.1 m, BMI was 47±5 kg/m2) and trunk height was 0.52±0,1 m, tFFM was 29.05±4,8 kg, tFM was 27.2±3.7 kg, trunk mass index was 66.6±10.3 kg/m², and trunk fat was 32.3±5.8 kg/m². In 93% of the patients there was an increase in obesity class using the tBMI. In patients with grade III obesity the tBMI reclassified to super obesity in 72% of patients and to super-super obesity in 24% of the patients. Conclusion: The trunk BMI is simple and allows a new reference for the evaluation of the body mass distribution, and therefore a new reclassification of the obesity class, evidencing the severity of obesity in a more objectively way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.