Lichens represent a significant source of antioxidants due to numerous metabolites that can reduce free radicals. Usnea barbata (L.) F.H. Wigg. has been recognized and used since ancient times for its therapeutic effects, some of which are based on its antioxidant properties. The present study aims to analyze the phytochemical profile and to evaluate the antioxidant and cytotoxic potential of this lichen species. Five dry extracts of U. barbata (UBDE) in different solvents (acetone, ethyl acetate, ethanol, methanol, water) were prepared by refluxing at Soxhlet to achieve these proposed objectives and to identify which solvent is the most effective for the extraction. The usnic acid content (UAC) was quantified by ultra-high performance liquid chromatography (UHPLC). The total polyphenols content (TPC) and tannins content (TC) were evaluated by spectrophotometry, and the total polysaccharides (PSC) were extracted by a gravimetric method. The 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical method was used to assess the antioxidant activity (AA) and the Brine Shrimp Lethality (BSL) assay was the biotest for cytotoxic activity evaluation. The ethyl acetate extract had the highest usnic acid content, and acetone extract had the highest content of total polyphenols and tannins. The most significant antioxidant effect was reported to methanol extract, and all the extracts proved high cytotoxicity. The water extract has the lowest cytotoxicity because usnic acid is slightly soluble in this solvent, and it was not found at UHPLC analysis. All extracts recorded a moderate correlation between the content of usnic acid, polyphenols, tannins, and AA; furthermore, it has been observed that the cytotoxicity varies inversely with the antioxidant effect.
Nowadays, numerous biomedical studies performed on natural compounds and plant extracts aim to obtain highly selective pharmacological activities without unwanted toxic effects. In the big world of medicinal plants, Usnea barbata (L) F.H. Wigg (U. barbata) and usnic acid (UA) are well-known for their therapeutical properties. One of the most studied properties is their cytotoxicity on various tumor cells. This work aims to evaluate their cytotoxic potential on normal blood cells. Three dry U. barbata extracts in various solvents: ethyl acetate (UBEA), acetone (UBA), and ethanol (UBE) were prepared. From UBEA we isolated usnic acid with high purity by semipreparative chromatography. Then, UA, UBA, and UBE dissolved in 1% dimethyl sulfoxide (DMSO) and diluted in four concentrations were tested for their toxicity on human blood cells. The blood samples were collected from a healthy non-smoker donor; the obtained blood cell cultures were treated with the tested samples. After 24 h, the cytotoxic effect was analyzed through the mechanisms that can cause cell death: early and late apoptosis, caspase 3/7 activity, nuclear apoptosis, autophagy, reactive oxygen species (ROS) level and DNA damage. Generally, the cytotoxic effect was directly proportional to the increase of concentrations, usnic acid inducing the most significant response. At high concentrations, usnic acid and U. barbata extracts induced apoptosis and DNA damage in human blood cells, increasing ROS levels. Our study reveals the importance of prior natural products toxicity evaluation on normal cells to anticipate their limits and benefits as potential anticancer drugs.
More than one out of every three new cancers is a skin cancer, and the large majority are basal cell carcinomas (BCC). Targeted therapy targets the cancer’s specific genes, proteins, or tissue environment that contributes to cancer growth and survival and blocks the growth as well as the spread of cancer cells while limiting damage to healthy cells. Therefore, in the present study AS1411 aptamer-functionalized liposomes for the treatment of BCC were obtained and characterized. Aptamer conjugation increased liposome size, suggesting that the presence of an additional hydrophilic molecule on the liposomal surface increased the hydrodynamic diameter. As expected, the negatively charged DNA aptamer reduced the surface potential of the liposomes. Vertical Franz diffusion cells with artificial membranes were used to evaluate the in vitro release of 5-fluorouracil (5-FU). The aptamer moieties increase the stability of the liposomes and act as a supplementary steric barrier leading to a lower cumulative amount of the released 5-FU. The in vitro cell viability, targeting capability and apoptotic effects of liposomes on the human dermal fibroblasts and on the basal cell carcinoma TE 354.T cell lines were also evaluated. The results indicate that the functionalized liposomes are more efficient as nanocarriers than the non-functionalized ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.