The susceptibility of cortical networks to use-dependent modifications declines with age (critical period) and this decline of neuronal plasticity during development is paralleled by the shortening of NMDA receptor EPSCs. We showed previously in the somatosensory cortex that the shortening of NMDA receptor kinetics correlates with a developmentally-regulated increase in the NR2A subunit expression. Here we examine whether this developmental regulation of NR2A expression is related to the duration of critical periods and whether it is influenced by experience. Functional NMDA receptors and their molecular characteristics are studied in identified layer IV neurons of rat visual cortex. In this structure the time course of the critical period differs from that in the somatosensory cortex and can be changed by sensory deprivation, thus permitting examination of correlations between the time course of receptor expression and the duration of the critical period. We find that the developmental expression of the NR2A subunit is delayed compared with the somatosensory cortex, in agreement with the prolonged critical period in the visual cortex. Moreover, sensory deprivation further delays the developmental change in the NMDA receptor subunit composition, demonstrating the activity dependence of this process and strengthening the correlation between changes in subunit composition and the time course of the critical period.
The process of brain edema formation has been studied extensively at the macroscopic level. In contrast, little is known about water fluxes and volume changes at the cellular level in the initial phase of brain edema. Insight in these "microscopic" events could pave the way for more efficient prevention and therapy. Here, we report measurements of brain cell volume responses recorded in vivo in a model of systemic hyponatremia. Transgenic mice expressing fluorescent proteins in astrocytes were subjected to hypo-osmotic stress and two photon laser scanning microscopy. Volume measurements of glial cells in the cerebellum and the visual cortex indicate that individual astrocytes undergo a position-dependent increase in cell volume by a factor of two or more during edema formation. Our data are the first to show that volume changes can be monitored at the cellular level in vivo and demonstrate that astrocytes are sites of water entry in the initial phase of brain edema formation. The uptake of water in astrocytes is likely to reflect the strong expression of aquaporin-4 in these cells.
Synchronization of neuronal discharges has been hypothesized to play a role in defining cell assemblies representing particular constellations of stimulus features. In many systems and species, synchronization is accompanied by an oscillatory response modulation at frequencies in the gamma-band. The cellular mechanisms underlying these phenomena of synchronization and oscillatory patterning have been studied mainly in vitro due to the difficulty in designing a direct in vivo assay. With the prospect of using conditional genetic manipulations of cortical network components, our objective was to test whether the mouse would meet the criteria to provide a model system for the study of gamma-band synchrony. Multi-unit and local field potential recordings were made from the primary visual cortex of anesthetized C57BL/6J mice. Neuronal responses evoked by moving gratings, bars, and random dot patterns were analyzed with respect to neuronal synchrony and temporal patterning. Oscillations at gamma-frequencies were readily evoked with all types of stimuli used. Oscillation and synchronization strength were largest for gratings and decreased when the noise level was increased in random-dot patterns. The center peak width of cross-correlograms was smallest for bars and increased with noise, yielding a significant difference between coherent random dot patterns versus patterns with 70% noise. Field potential analysis typically revealed increases of power in the gamma-band during response periods. Our findings are compatible with a role for neuronal synchrony in mediating perceptual binding and suggest the usefulness of the mouse model for testing hypotheses concerning both the mechanisms and the functional role of temporal patterning.
Inefficient visual search can become efficient with practice [Vision Research 35 (1995) 2037; 40 (2000) 2925]. In this study, we wondered whether this improvement depends on unique visual features associated with the target, on differences in item-specific brightness distribution between target and distractors, or only on a change in the allocation of attention and thus global search strategy. We found that both, unique visual features and differences in brightness distribution lead to parallelisation with practice of originally inefficient search. Prolonged practice of inefficient search tasks lacking both unique visual features and differences in brightness distribution (conjunctions) does not lead to improved performance, thus indicating that perceptual learning in visual search does not solely reflect an unspecific global improvement in search strategy. Changing the brightness polarity of the stimuli leads to instantaneous, complete transfer to the new task. There is no transfer but rather trade-off between the learning based on unique visual features or on differences in brightness distribution between target and distractors.
We describe a multiphoton laser scanning microscope setup for transcranial in vivo brain imaging in mice. The modular system is based on a modified industrial standard Confocal Scanning Laser Microscope (CSLM) and is assembled mainly from commercially available components. A special multifunctional stage, which is optimized for both laser scanning microscopic observation and preparative animal surgery, has been developed and built. The detection unit includes a highly efficient photomultiplier tube installed in a Peltier-cooled thermal box shielding the detector from changes in room temperature and from distortions caused by external electromagnetic fields. The images are recorded using a 12-bit analog–to–digital converter. Depending on the characteristics of the staining, individual nerve cells can be imaged down to at least 100μm below the intact cranium and down to at least 200μm below the opened cranium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.