Transcription factor TFEB is thought to control cellular functions—including in the vascular bed—primarily via regulation of lysosomal biogenesis and autophagic flux. Here, we report that TFEB also orchestrates a non‐canonical program that controls the cell cycle/VEGFR2 pathway in the developing vasculature. In endothelial cells, TFEB depletion halts proliferation at the G1‐S transition by inhibiting the CDK4/Rb pathway. TFEB‐deficient cells attempt to compensate for this limitation by increasing VEGFR2 levels at the plasma membrane via microRNA‐mediated mechanisms and controlled membrane trafficking. TFEB stimulates expression of the miR‐15a/16‐1 cluster, which limits VEGFR2 transcript stability and negatively modulates expression of MYO1C, a regulator of VEGFR2 trafficking to the cell surface. Altered levels of miR‐15a/16‐1 and MYO1C in TFEB‐depleted cells cause increased expression of plasma membrane VEGFR2, but in a manner associated with low signaling strength. An endothelium‐specific Tfeb‐knockout mouse model displays defects in fetal and newborn mouse vasculature caused by reduced endothelial proliferation and by anomalous function of the VEGFR2 pathway. These previously unrecognized functions of TFEB expand its role beyond regulation of the autophagic pathway in the vascular system.
Central obesity shows impaired platelet responses to the antiaggregating effects of nitric oxide (NO), prostacyclin, and their effectors-guanosine 3′,5′-cyclic monophosphate (cGMP) and adenosine 3′,5′-cyclic monophosphate (cAMP). The influence of weight loss on these alterations is not known. To evaluate whether a diet-induced body-weight reduction restores platelet sensitivity to the physiological antiaggregating agents and reduces platelet activation in subjects affected by central obesity, we studied 20 centrally obese subjects before and after a 6-month diet intervention aiming at reducing body weight by 10%, by measuring (i) insulin sensitivity (homeostasis model assessment of insulin resistance (HOMA IR )); (ii) plasma lipids; (iii) circulating markers of inflammation of adipose tissue and endothelial dysfunction, and of platelet activation (i.e., soluble CD-40 ligand (sCD-40L) and soluble P-selectin (sP-selectin)); (iv) ability of the NO donor sodium nitroprusside (SNP), the prostacyclin analog Iloprost and the cyclic nucleotide analogs 8-bromoguanosine 3′,5′-cyclic monophosphate (8-Br-cGMP) and 8-bromoadenosine 3′,5′-cyclic monophosphate (8-Br-cAMP) to reduce platelet aggregation in response to adenosine-5-diphosphate (ADP); and (v) ability of SNP and Iloprost to increase cGMP and cAMP. The 10 subjects who reached the body-weight target showed significant reductions of insulin resistance, adipose tissue, endothelial dysfunction, and platelet activation, and a significant increase of the ability of SNP, Iloprost, 8-Br-cGMP, and 8-Br-cAMP to reduce ADP-induced platelet aggregation and of the ability of SNP and Iloprost to increase cyclic nucleotide concentrations. No change was observed in the 10 subjects who did not reach the body-weight target. Changes of platelet function correlated with changes of HOMA IR . Thus, in central obesity, diet-induced weight loss reduces platelet activation and restores the sensitivity to the physiological antiaggregating agents, with a correlation with improvements in insulin sensitivity.
Platelet resistance to the antiaggregating effects of prostacyclin and NO in obesity is attributable to impairment of cyclic nucleotide synthesis and action. As cyclic nucleotides are the main effectors of platelet antiaggregation, the resistance to them can account for platelet hyperactivity in obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.