A comprehensive focus on 4-hydroxynonenal (HNE) as candidate molecule in a variety of pathophysiological conditions occurring in humans is here provided. Despite an active, now well characterized, metabolism in most cells and tissues, HNE can be easily detected and quantified by means of several methods, although with different sensitivity. Measurements of HNE and/or stable metabolites in biological fluids are already applied as lipid peroxidation/oxidative stress markers in a huge number of human disease processes, often sustained by inflammatory reactions. A primary involvement of this aldehydic product of membrane lipid oxidation in inflammation-related events, as well as in regulation of cell proliferation and growth, in necrotic or apoptotic cell death, appears supported by its marked ability to modulate several major pathways of cell signaling and, consequently, gene expression. The actual knowledge of HNE reactivity, metabolism, signaling and modulatory effect in the various human organs should provide a solid background to the investigation of the aldehyde's contribution to the pathogenesis of human major chronic diseases and would likely promote advanced and oriented applications not only in diagnosis and prevention but also in molecular treatment of human diseases.
An increasing body of evidence from animal models, human specimens and cell lines points to reactive oxygen species as likely involved in the pathways, which convey both extracellular and intracellular signals to the nucleus, under a variety of pathophysiological conditions. Indeed, reactive oxygen species (ROS), in a concentration compatible with that detectable in human pathophysiology, appear able to modulate a number of kinases and phosphatases, redox sensitive transcription factors and genes. This type of cell signalling consistently implies the additional involvement of other bioactive molecules that stem from ROS reaction with cell membrane lipids. The present review aims to comprehensively report on the most recent knowledge about the potential role of ROS and oxidised lipids in signal transduction processes in the major events of cell and tissue pathophysiology. Among the lipid oxidation products of ROS-dependent reactivity, which appear as candidates for a signalling role, there are molecules generated by oxidation of cholesterol, polyunsaturated fatty acids and phospholipids, as well as lysophosphatidic acid and lysophospholipids, platelet activating factor-like lipids, isoprostanes, sphingolipids and ceramide.
Pathological accumulation of 27-carbon intermediates or end-products of cholesterol metabolism, named oxysterols, may contribute to the onset and especially to the development of major chronic diseases in which inflammation, but also oxidative damage and to a certain extent cell death, are hallmarks and primary mechanisms of progression. Indeed, certain oxysterols exercise strong pro-oxidant and pro-inflammatory effects at concentrations detectable in the lesions typical of atherosclerosis, neurodegenerative diseases, inflammatory bowel diseases, age-related macular degeneration, and other pathological conditions characterized by altered cholesterol uptake and/or metabolism.
Abstract4-Hydroxy-2,3-nonenal (HNE) is an aldehydic end product of lipid peroxidation which has been detected in vivo in clinical and experimental conditions of chronic liver damage. HNE has been shown to stimulate procollagen type I gene expression and synthesis in human hepatic stellate cells (hHSC) which are known to play a key role in liver fibrosis. In this study we investigated the molecular mechanisms underlying HNE actions in cultured hHSC. HNE, at doses compatible with those detected in vivo, lead to an early generation of nuclear HNE-protein adducts of 46, 54, and 66 kD, respectively, as revealed by using a monoclonal antibody specific for HNE-histidine adducts. This observation is related to the lack of crucial HNE-metabolizing enzymatic activities in hHSC. Kinetics of appearance of these nuclear adducts suggested translocation of cytosolic proteins. The p46 and p54 isoforms of c-Jun amino-terminal kinase (JNKs) were identified as HNE targets and were activated by this aldehyde. A biphasic increase in AP-1 DNA binding activity, associated with increased mRNA levels of c-jun , was also observed in response to HNE. HNE did not affect the Ras/ERK pathway, c-fos expression, DNA synthesis, or NF-B binding. This study identifies a novel mechanism linking oxidative stress to nuclear signaling in hHSC. This mechanism is not based on redox sensors and is stimulated by concentrations of HNE compatible with those detected in vivo, and thus may be relevant during chronic liver diseases. ( J. Clin. Invest. 1998Invest. . 102:1942Invest. -1950
Alzheimer's disease (AD) is a gradually debilitating disease that leads to dementia. The molecular mechanisms underlying AD are still not clear, and at present no reliable biomarkers are available for the early diagnosis. In the last several years, together with oxidative stress and neuroinflammation, altered cholesterol metabolism in the brain has become increasingly implicated in AD progression. A significant body of evidence indicates that oxidized cholesterol, in the form of oxysterols, is one of the main triggers of AD. The oxysterols potentially most closely involved in the pathogenesis of AD are 24-hydroxycholesterol and 27-hydroxycholesterol, respectively deriving from cholesterol oxidation by the enzymes CYP46A1 and CYP27A1. However, the possible involvement of oxysterols resulting from cholesterol autooxidation, including 7-ketocholesterol and 7β-hydroxycholesterol, is now emerging. In a systematic analysis of oxysterols in post-mortem human AD brains, classified by the Braak staging system of neurofibrillary pathology, alongside the two oxysterols of enzymatic origin, a variety of oxysterols deriving from cholesterol autoxidation were identified; these included 7-ketocholesterol, 7α-hydroxycholesterol, 4β-hydroxycholesterol, 5α,6α-epoxycholesterol, and 5β,6β-epoxycholesterol. Their levels were quantified and compared across the disease stages. Some inflammatory mediators, and the proteolytic enzyme matrix metalloprotease-9, were also found to be enhanced in the brains, depending on disease progression. This highlights the pathogenic association between the trends of inflammatory molecules and oxysterol levels during the evolution of AD. Conversely, sirtuin 1, an enzyme that regulates several pathways involved in the anti-inflammatory response, was reduced markedly with the progression of AD, supporting the hypothesis that the loss of sirtuin 1 might play a key role in AD. Taken together, these results strongly support the association between changes in oxysterol levels and AD progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.