The discovery in [G. Pinzari. PhD thesis. Univ. Roma Tre. 2009], [L.
Chierchia and G. Pinzari, Invent. Math. 2011] of the Birkhoff normal form for
the planetary many--body problem opened new insights and hopes for the
comprehension of the dynamics of this problem. Remarkably, it allowed to give a
{\sl direct} proof of the celebrated Arnold's Theorem [V. I. Arnold. Uspehi
Math. Nauk. 1963] on the stability of planetary motions. In this paper, using a
"ad hoc" set of symplectic variables, we develop an asymptotic formula for this
normal form that may turn to be useful in applications. As an example, we
provide two very simple applications to the three-body problem: we prove a
conjecture by [V. I. Arnold. cit] on the "Kolmogorov set"of this problem and,
using Nehoro{\v{s}}ev Theory [Nehoro{\v{s}}ev. Uspehi Math. Nauk. 1977], we
prove, in the planar case, stability of all planetary actions over
exponentially-long times, provided mean--motion resonances are excluded. We
also briefly discuss perspectives and problems for full generalization of the
results in the paper.Comment: 44 pages. Keywords: Averaging Theory, Birkhoff normal form,
Nehoro{\v{s}}ev Theory, Planetary many--body problem, Arnold's Theorem on the
stability of planetary motions, Properly--degenerate kam Theory, steepness.
Revised version, including Reviewer's comments. Typos correcte
We consider the partial average i.e., the Lagrange average with respect to just one of the two mean anomalies, of the Newtonian part of the perturbing function in the three-body problem Hamiltonian. We prove that such a partial average exhibits a non-trivial first integral. We show that this integral is fully responsible of certain cancellations in the averaged Newtonian potential, including a property noticed by Harrington in the 60s. We also highlight its joint rôle (together with certain symmetries) in the appearance of the so called "Herman resonance". Finally, we discuss an application and an open problem.
Arnold's "Fundamental Theorem" on properly-degenerate systems [3, Chapter IV] is revisited and improved with particular attention to the relation between the perturbative parameters and to the measure of the Kolmogorov set. Relations with the planetary many-body problem are shortly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.