Atherosclerosis is an inflammatory-fibrotic response to accumulation of cholesterol in the artery wall. In hypercholesterolemia, low density lipoproteins (LDL) accumulate and are oxidized to proinflammatory compounds in the arterial intima, leading to activation of endothelial cells, macrophages, and T lymphocytes. We have studied immune cell activation and the autoimmune response to oxidized LDL in atherosclerotic apo E-knockout mice. Autoantibodies to oxidized LDL exhibited subclass specificities indicative of T cell help, and the increase in antibody titers in peripheral blood was associated with increased numbers of cytokine-expressing T cells in the spleen. In addition to T cell-dependent antibodies, IgM antibodies to oxidized LDL were also increased in apo E-knockout mice. This suggests that both T cell-dependent and T cell-independent epitopes may be present on oxidized LDL. In moderate hypercholesterolemia, IgG antibodies were largely of the IgG2a isotype, suggesting that T cell help was provided by proinflammatory T helper (Th) 1 cells, which are prominent components of atherosclerotic lesions. In severe hypercholesterolemia induced by cholesterol feeding of apo E-knockout mice, a switch to Th2-dependent help was evident. It was associated with a loss of IFN-␥ -producing Th1 cells in the spleen, whereas IL-4-producing Th2 cells were more resistant to hypercholesterolemia. IFN-␥ but not IL-4 mRNA was detected in atherosclerotic lesions of moderately hypercholesterolemic apo E-knockout mice, but IL-4 mRNA appeared in the lesions when mice were made severely hypercholesterolemic by cholesterol feeding. These data show that IFN-␥ -producing Th1 cells infiltrate atherosclerotic lesions and provide T cell help for autoimmune responses to oxidized LDL in apo E-knockout mice. However, severe hypercholesterolemia is associated with a switch from Th1 to Th2, which results not only in the formation of IgG1 autoantibodies to oxidized LDL, but also in the appearance of Th2-type cytokines in the atherosclerotic lesions. Since the two subsets of T cells counteract each other, this switch may have important consequences for the inflammatory/immune process in atherosclerosis. ( J. Clin.
Abstract-T cells are present in atherosclerotic lesions at all stages of development. They exhibit activation markers and are particularly prominent at sites of plaque rupture. This suggests that T-cell-mediated immune responses are involved in the pathogenesis of atherosclerosis. Antigen-specific T cells reactive with oxidized lipoproteins and heat shock proteins have been isolated from plaques, indicating that local activation and clonal expansion might occur. To analyze different stages of atherosclerosis, we have used a murine model. Targeted deletion of the apolipoprotein E gene results in severe hypercholesterolemia and spontaneous atherosclerosis, with lesions containing large numbers of T cells and macrophages. We have analyzed mRNA for T-cell antigen receptors (TCRs) from aortic fatty streaks, early fibrofatty plaques, and advanced fibrofatty plaques of such mice. Polymerase chain reaction amplification of complementaritydetermining region 3 (CDR3 region) of TCRs was followed by spectratyping of fragment lengths. This analysis detected all types of variable (V) segments with a gaussian distribution of CDR3 in lymph nodes. In contrast, a restricted heterogeneity was found in atherosclerotic lesions, with expansion of a limited set of V and V␣ segments and a monotypic or oligotypic CDR3 spectrum in each lesion. V6 was expressed in all lesions; V5.2, V16, V␣34s, and V␣9, in the majority of lesions; and V6, V5.
Our findings suggest that the T-cell response observed in UA patients is antigen-driven and directed to antigens contained in the culprit coronary atherosclerotic plaques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.