Saliva contains a complex mixture of proteins and peptides as well as fragments derived from these molecules. By RP 1 -HPLC-ESI-MS analysis of the acidic soluble fraction of human whole saliva we have identified in the chromatographic pattern more than 120 different proteins and naturally occurring peptides (1-6). Their characterization was performed by a variety of mass spectrometric techniques coupled with different enzymatic treatments and amino acid sequencing. The proteins and naturally occurring peptides belong to families of well characterized salivary proteins including Histatins, Statherin, acidic and basic proline-rich proteins (aPRP and bPRP), Cystatins, and Defensins (1-6). Two-dimensional gel electrophoresis has also been used by other researchers for analysis of salivary proteins and peptides, but this technique is not well suited for identification of small peptides as illustrated by the difficulty in identifying Histatins and the majority of bPRPs and bPRP fragments (7-9). However, knowledge of salivary proteins and peptides as well as their naturally occurFrom the ‡Dipartimento di Scienze Applicate ai Biosistemi, Università di Cagliari,
This study addresses the relationship between cochlear oxidative damage and auditory cortical injury in a rat model of repeated noise exposure. To test the effect of increased antioxidant defenses, a water-soluble coenzyme Q 10 analog (Q ter ) was used. We analyzed auditory function, cochlear oxidative stress, morphological alterations in auditory cortices and cochlear structures, and levels of coenzymes Q 9 and Q 10 (CoQ 9 and CoQ 10 , respectively) as indicators of endogenous antioxidant capability. We report three main results. First, hearing loss and damage in hair cells and spiral ganglion was determined by noise-induced oxidative stress. Second, the acoustic trauma altered dendritic morphology and decreased spine number of II-III and V-VI layer pyramidal neurons of auditory cortices. Third, the systemic administration of the water-soluble CoQ 10 analog reduced oxidative-induced cochlear damage, hearing loss, and cortical dendritic injury. Furthermore, cochlear levels of CoQ 9 and CoQ 10 content increased. These findings indicate that antioxidant treatment restores auditory cortical neuronal morphology and hearing function by reducing the noise-induced redox imbalance in the cochlea and the deafferentation effects upstream the acoustic pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.