The Abdominal B (AbdB) genes constitute a distinct subfamily of homeobox genes that exhibit posterior domains of expression, including the genital imaginal disc in Drosophila and the developing urogenital system in vertebrates. We have mutated the AbdB gene Hoxa10 in mice. We report here that homozygotes are fully viable and show an anterior homeotic transformation of lumbar vertebrae. All male homozygotes manifest bilateral cryptorchidism resulting in severe defects in spermatogenesis and increasing sterility with age. Female homozygotes ovulate normally, but about 80% are sterile because of death of embryos between days 2.5 and 3.5 post coitum. This coincides spatially and temporally with expression of maternal Hoxa10 in distal oviductal and uterine epithelium. These results indicate a role for AbdB Hox genes in male and female fertility and suggest that maternal Hoxa10 is required to regulate the expression of a factor that affects the viability of preimplantation embryos.
Mice deficient for the Abdominal B (AbdB) Hox gene Hoxa-10 exhibit reduced fertility due to defects in implantation. During the peri-implantation period Hoxa-10 is sequentially expressed in the uterine epithelium and stroma. These observations, combined with the stringent regulation of uterine implantation by ovarian steroids, prompted us to test whether estrogen and progesterone directly regulate the expression of Hoxa-10 and other AbdB Hoxa genes. Here we show that Hoxa-10 expression in the adult uterus is strongly activated by progesterone. This activation is blocked by the progesterone receptor antagonist RU486 and is independent of new protein synthesis. In addition, Hoxa-10 expression is repressed by estrogen in a protein synthesis-independent manner. Analysis of adjacent AbdB Hoxa genes reveals that Hoxa-9 and a-11 are also activated in a colinear fashion by progesterone but differentially regulated by estrogen. These results suggest that the regulation of AbdB Hox gene expression in the adult uterus by ovarian steroids is a property related to position within the cluster, mediated by the direct action of estrogen and progesterone receptors upon these genes. We next examined whether the embryonic expression of Hoxa10 is regulable by hormonal factors. Previous work has demonstrated that perinatal administration of the synthetic estrogen diethylstilbestrol (DES) to mice and humans produces uterine, cervical, and oviductal malformations. Certain of these phenotypes resemble those in Hoxa-10 knockout mice, suggesting that Hoxa-10 gene expression might be repressed by DES during reproductive tract morphogenesis. Exposure of the developing female reproductive tract to DES, either in vivo or in organ culture, represses the expression of Hoxa-10 in the Müllerian duct. Thus, these data not only establish a direct link between ovarian steroids and AbdB Hoxa gene expression in the adult uterus, but also provide a potential mechanism for the teratogenic effects of DES on the developing reproductive tract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.