The composite structure of the mammalian skull, which forms predominantly via intramembranous ossification, requires precise pre- and post-natal growth regulation of individual calvarial elements. Disturbances of this process frequently cause severe clinical manifestations in humans. Enhanced DNA binding by a mutant MSX2 homeodomain results in a gain of function and produces craniosynostosis in humans. Here we show that Msx2-deficient mice have defects of skull ossification and persistent calvarial foramen. This phenotype results from defective proliferation of osteoprogenitors at the osteogenic front during calvarial morphogenesis, and closely resembles that associated with human MSX2 haploinsufficiency in parietal foramina (PFM). Msx2-/- mice also have defects in endochondral bone formation. In the axial and appendicular skeleton, post-natal deficits in Pth/Pthrp receptor (Pthr) signalling and in expression of marker genes for bone differentiation indicate that Msx2 is required for both chondrogenesis and osteogenesis. Consistent with phenotypes associated with PFM, Msx2-mutant mice also display defective tooth, hair follicle and mammary gland development, and seizures, the latter accompanied by abnormal development of the cerebellum. Most Msx2-mutant phenotypes, including calvarial defects, are enhanced by genetic combination with Msx1 loss of function, indicating that Msx gene dosage can modify expression of the PFM phenotype. Our results provide a developmental basis for PFM and demonstrate that Msx2 is essential at multiple sites during organogenesis.
SUMMARY It is intuitively obvious that the ability of a cell to repair DNA damage is saturable, either by limitation of enzymatic activities, the time allotted to achieve their function, or both. However, very little is known regarding the mechanisms that establish such a threshold. Here we demonstrated that the CUL4A ubiquitin ligase restricts the cellular repair capacity by orchestrating the concerted actions of nucleotide excision repair (NER) and the DNA damage-responsive G1/S checkpoint through selective degradation of the DDB2 and XPC DNA damage sensors and the p21/CIP1/WAF1 checkpoint effector. We generated Cul4a conditional knockout mice and observed that skin-specific Cul4a ablation dramatically increased resistance to UV-induced skin carcinogenesis. Our findings reveal that wild-type cells do not operate at their full DNA repair potential, underscore the critical role of CUL4A in establishing the cellular DNA repair threshold, and highlight the potential augmentation of cellular repair proficiency by pharmacological CUL4A inhibition.
Mice deficient for the Abdominal B (AbdB) Hox gene Hoxa-10 exhibit reduced fertility due to defects in implantation. During the peri-implantation period Hoxa-10 is sequentially expressed in the uterine epithelium and stroma. These observations, combined with the stringent regulation of uterine implantation by ovarian steroids, prompted us to test whether estrogen and progesterone directly regulate the expression of Hoxa-10 and other AbdB Hoxa genes. Here we show that Hoxa-10 expression in the adult uterus is strongly activated by progesterone. This activation is blocked by the progesterone receptor antagonist RU486 and is independent of new protein synthesis. In addition, Hoxa-10 expression is repressed by estrogen in a protein synthesis-independent manner. Analysis of adjacent AbdB Hoxa genes reveals that Hoxa-9 and a-11 are also activated in a colinear fashion by progesterone but differentially regulated by estrogen. These results suggest that the regulation of AbdB Hox gene expression in the adult uterus by ovarian steroids is a property related to position within the cluster, mediated by the direct action of estrogen and progesterone receptors upon these genes. We next examined whether the embryonic expression of Hoxa10 is regulable by hormonal factors. Previous work has demonstrated that perinatal administration of the synthetic estrogen diethylstilbestrol (DES) to mice and humans produces uterine, cervical, and oviductal malformations. Certain of these phenotypes resemble those in Hoxa-10 knockout mice, suggesting that Hoxa-10 gene expression might be repressed by DES during reproductive tract morphogenesis. Exposure of the developing female reproductive tract to DES, either in vivo or in organ culture, represses the expression of Hoxa-10 in the Müllerian duct. Thus, these data not only establish a direct link between ovarian steroids and AbdB Hoxa gene expression in the adult uterus, but also provide a potential mechanism for the teratogenic effects of DES on the developing reproductive tract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.