Bioactive peptides that target the gastrointestinal tract can strongly affect the health of animals and humans. This study aimed to evaluate the abilities of two peptides derived from egg albumin transferrin, IRW and IQW, to treat enteritis in a mouse model of
Citrobacter rodentium
-induced colitis by evaluating serum metabolomics and gut microbes. Forty-eight mice were randomly assigned to six groups: basal diet (CTRL), intragastric administration
Citrobacter rodentium
(CR), basal diet with 0.03%IRW (IRW), CR with 0.03% IRW (IRW+CR), basal diet with 0.03%IQW (IQW) and CR with 0.03% IQW (IQW+CR). CR administration began on day 10 and continued for 7 days. After 14 days of IRW and IQW treatment, serum was collected and subjected to a metabolomics analysis. The length and weight of each colon were measured, and the colon contents were collected for 16srRNA sequencing. The colons were significantly longer in the CR group, compared to the CTRL group. A serum metabolomics analysis revealed no significant difference in microbial diversity between the six groups. Compared with the CTRL group, the proportions of Firmicutes and Actinobacteria species decreased significantly and the proportions of Bacteroidetes and Proteobacteria species increased in the CR group. There were no significant differences between the CTRL and other groups. The serum metabolomics analysis revealed that Infected by
CR
increased the levels of oxalic acid, homogentisic acid and prostaglandin but decreased the levels of L-glutamine, L-acetyl carnitine, 1-methylhistidine and gentisic acid. Therefore, treatment with IRW and IQW was shown to regulate the intestinal microorganisms associated with colonic inflammation and serum metabolite levels, thus improving intestinal health.
The strain Streptomyces sp. Al-Dhabi-1 was isolated from soil sediments collected from Tharban hot spring in the southern west of Saudi Arabia using actinomycetes isolation agar and starch casein agar at 55 °C. Identification of the isolate was done according to morphological, physiological and biochemical characteristics and 16S rRNA sequence similarity as well. 16S rRNA sequence and blast analyses confirmed that the isolate belonging to the genus Streptomyces. The sequence was submitted to GenBank with accession number (KF815080). Ethyl acetate extract of Streptomyces sp. Al-Dhabi-1 showed good antimicrobial activities against tested pathogenic microbes. Minimum inhibitory concentration results showed that the best values were observed against S. agalactiae (<0.039 mg/ml) and Klebsiella pneumonia (0.125 mg/ml). Minimum inhibitory concentration of Al-Dhabi-1 against fungi; Cryptococcus neoformans (0.078 mg/ml), C. albicans (0.156 mg/ml), A. niger (0.625 mg/ml), and T. mentagrophytes (0.156 mg/ml). GC-MS analysis was used for the chemical profile of ethyl acetate extract. Benzeneacetic acid (16.02 %) and acetic acid 2-phenylethyl ester (10.35 %) were the major compounds among 31 substances found the ethyl acetate extract. According to the results of antimicrobial activity against pathogenic microbes, it is clear that the actinomycetes from hot springs with extreme environments are promising source for antimicrobial compounds.
In the present study, four Lactobacillus strains from the cheese were analyzed for its probiotic potential against enteropathogenic bacteria. The probiotic properties of the selected strains were also analyzed and the selected bacterial strains showed high tolerance in bile salts and organic acid. The strain
L. plantarum
LP049 showed maximum survival rate (92 ± 4.2% and 93.3 ± 2%) after 3 h of treatment at 0.25% (w/v) bile salts and 0.25% (w/v) organic acid concentrations. The ability of the
Lactobacillus
strains to adhere to human epithelial cells (HT-29 cell lines) was evaluated and
L. plantarum
LP049 showed maximum adhesion property (19.2 ± 1.1%) than other tested strains. The Lactobacillus strains produced lactic acid at various concentrations. Compared with other strains, maximum level of lactic acid (3.1 g/L), hydrogen peroxide (4.31 mM) and bacteriocin (31 AU/mg) was detected in LB049. The inhibitory activity of culture supernatant against various bacterial pathogens was observed. The zone of inhibition ranged between 6 ± 2 mm and 23 ± 2 mm. The cell free extract showed activity against,
Escherichia coli
(ATCC 10536),
Salmonella enteritidis
(ATCC 13076),
Shigella flexneri
(ATCC 29903), and
Enterococcus faecium
(ATCC 8459). Consequently,
L. plantarum
LP049 may be considered as a potential candidate for the production of novel bioactive metabolites for therapeutic and bio-protective applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.