Despite the success of immune checkpoint blockade as a strategy for activating an antitumor immune response and promoting cancer regression, only a subset of patients have durable clinical benefit. Efforts are ongoing to identify robust biomarkers that can effectively predict treatment response to immune checkpoint inhibitors (ICIs). Although PD-L1 expression is useful for stratifying patients, it is an imperfect tool. Comprehensive next-generation sequencing platforms that are readily used in clinical practice to identify a tumor’s potentially actionable genetic alterations also reveal tumor genomic features, including tumor mutation burden (TMB), that may impact the response to ICIs. High TMB enhances tumor immunogenicity through increased numbers of tumor neoantigens that may promote an immune response. Defective DNA repair, leading to microsatellite instability, is an endogenous mechanism for increased tumor TMB that augments response to anti–PD-1 blockade. Alternatively, DNA damage from exogenous factors is responsible for high TMB seen in melanoma, lung cancer, and urothelial carcinoma, among tumor subtypes with higher response rates to ICIs. In this review, we summarize data supporting the use of TMB as a biomarker as well as its known limitations. We also highlight specific tumor suppressor genes and oncogenes that are under investigation as biomarkers for ICI response and resistance. Efforts are ongoing to delineate which genomic tumor characteristics can eventually be utilized in clinical practice to ascertain the benefit of ICIs for an individual patient.
The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) osimertinib has significantly prolonged progression-free survival (PFS) in EGFR-mutant lung cancer patients, including those with brain metastases. However, despite striking initial responses, osimertinib-treated patients eventually develop lethal metastatic relapse, often to the brain. Although osimertinib-refractory brain relapse is a major clinical challenge, its underlying mechanisms remain poorly understood. Using metastatic models of EGFR-mutant lung cancer, we show that cancer cells expressing high intracellular S100A9 escape osimertinib and initiate brain relapses. Mechanistically, S100A9 upregulates ALDH1A1 expression and activates the retinoic acid (RA) signaling pathway in osimertinib-refractory cancer cells. We demonstrate that the genetic repression of S100A9, ALDH1A1, or RA receptors (RAR) in cancer cells, or treatment with a pan-RAR antagonist, dramatically reduces brain metastasis. Importantly, S100A9 expression in cancer cells correlates with poor PFS in osimertinib-treated patients. Our study therefore identifies a novel, therapeutically targetable S100A9-ALDH1A1-RA axis that drives brain relapse.Research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.