A series of new heterocyclic derivatives having a pyridine nucleus were synthesized. 4-(5-(2-Chlorophenyl)-4H-1,2,4-triazol-3-yl)pyridine (7c) and 4-(5-(2-Nitrophenyl)-4H-1,2,4-triazol-3-yl)pyridine (7d) presented the best analgesic profie of this series in hot-plate, tail-flick, and formalin-induced licking tests, which was partially prevented by pretreatment with mecamylamine, a nicotinic receptor antagonist.
Objective: A new series 2-phenyl-3-(substituted benzo[d] thiazol-2-ylamino)-quinazoline-4(3H)-one was prepared by the fusion method by reacting 2-phenyl benzoxazine with 2-hydrazino benzothiazole and it was evaluated for their antimicrobial activity against gram positive, gram negative bacteria and fungi.Methods: Titled compounds were synthesized by fusion reactions. These compounds were evaluated by in vitro antibacterial and antifungal activity using the minimum inhibitory concentration and zone of inhibition methods. The synthesized compounds were characterized with the help of infrared, NMR and mass spectral studies. The benzothiazole moiety and the quinazoline ring have previously shown DNA gyrase inhibition and target related antibacterial activity. Thus, molecular docking studies of synthesized compounds were carried out (PDB: 3G75) to study the possible interaction of compounds with the target. The batch grid docking was performed to determine the probable.Results: These compounds showed significant activity against gram positive and gram negative bacteria as well against the fungi. The compound A5 was found to be active against B. subtilis, P aeruginosa and C. albican at 12.5 µg/ml MIC. The compound A3 was found to be active against all microbial strains selected at 25 and 12.5 µg/ml MIC.Conclusion: Though the relationship between the activities shown by these compounds in, the antimicrobial study is still to be established, the docking studies conducted found to be consistent with antimicrobial results. Thus the results indicate that the designed structure can be a potential lead as an antimicrobial agent.
Objective: To develop a novel, accurate, precise and linear reverse phase high-performance liquid chromatography (RP-HPLC) and Stability Indicating Assay Method (SIAMs) for simultaneous, qualitative and quantitative estimation of aspirin, rosuvastatin and clopidogrel in bulk and pharmaceutical dosage form as per International Conference on Harmonization (ICH) guidelines.
Method:In the present work, good chromatographic separation was achieved by isocratic method using a BISCOF HPLC C18
Results:The retention time of aspirin, rosuvastatin, and clopidogrel was found to be 4.3 min, 7.6 min and 16.6 min respectively. For linearity sevenpoint calibration curves were obtained in a concentration range from 1-7 µg/ml for aspirin, rosuvastatin and clopidogrel with correlation coefficient 0.999, 0.9989, 0.9988 respectively. The high recovery values (99%-101%) indicate a satisfactory accuracy. The low percent relative standard deviation (% RSD) values in the precision study reveal that the method is precise. In the present study stability indicating an RP-HPLC method for the combination was tested by degrading the drugs together under various stress condition like acid, base and neutral hydrolysis, oxidation, thermal and photolytic stress which is recommended by ICH. column (250 mm ×4.6, 5 µm) and a mobile phase consisting of water at pH 2.51 with 0.1 % (v/v) orthophosphoric acid (OPA): acetonitrile in the ratio 50:50, at a flow rate of 1 ml/min. The effluents obtained were monitored at 237 nm with the UV-visible detector.
Conclusion:The developed RP-HPLC method is simple, economic, specific, accurate and precise for the simultaneous estimation of aspirin, rosuvastatin, and clopidogrel in the combined capsule dosage form. The developed stability indicating analytical method can be used to check the stability of the compounds and was found suitable to determine % degradation of drugs in pharmaceutical dosage form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.