We investigated the relationship of apoB/apoA1 ratio and coronary heart disease (CHD) in persons who were overweight or obese. The subjects were divided by the body mass indexes (BMI) into the normal weight group (n=397, BMI<24 kg/m2) and the overweight group (n=400, BMI>24 kg/m2). Our results showed that the over-weight group had higher blood pressure [(130.15±19.01) mmHg vs (123.66±18.70) mmHg] and higher levels of blood sugar [(7.09±2.89) mmol/L vs (6.21±2.59) mmol/L], triglyceride [(1.93±1.19) mmol/L vs (1.44±0.85) mmol/L], total cholesterol [(4.26±1.06) mmol/L vs (4.09±0.99) mmol/L], low-density lipoprotein cholesterol (LDL-C) [(2.56±0.75) mmol/L vs (2.39±0.72) mmol/L], and apoB [(0.83±0.27) mg/L vs (0.78±0.23) mg/L], and a higher apoB/apoA1 ratio (0.83±0.27 vs 0.75±0.25) and lower levels high-density lipoprotein cholesterol [(1.10±0.26) mmol/L vs (1.21±0.31) mmol/L] and apoA1 [(1.04±0.20) mg/L vs (1.08±0.22) mg/L] than those of the normal weight group (all P < 0.05). The prevalence of CHD in the over-weight group in the lowest LDL quartile was almost twice greater than that of the highest apoB/apoA1 quartile, compared with the subjects in the lowest apoB/apoA1 quartile. The higher apoB/apoA1 quartile was in agreement with the higher prevalence of CHD. In the overweight and obesity group, the area under ROC curve (AUC) was the highest for apoB/apoA1 (0.655). The cut-off point of apoB/apoA1 for optimal sensitivity and specificity was at 0.80, with a sensitivity of 57.19% and a specificity of 71.72%. In conclusion, apoB and apoA1 were simple clinical indicators, and the apoB/apoA1 ratio was closely related with CHD in overweight and obese patients. The apoB/apoA1 ratio may provide some useful information in the differential diagnosis.
Hypertensive myocardial remodeling has an important role in the pathophysiology of hypertensive disease. This study suggests that telmisartan (TEL) can inhibit myocardial fibrosis of hypertensive left ventricular hypertrophy (LVH) through the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway. Through echocardiography and hemodynamics, it was shown that TEL could improve cardiac function and reduce the degree of hypertensive LVH in hypertensive rats. Through immunoassay, it was shown that TEL could antagonize renin-angiotensin-aldosterone system expression in plasma and myocardial tissue. By Masson staining, Elisa and alkaline hydrolysis assays, it was demonstrated that TEL could significantly inhibit myocardial fibrosis in hypertensive rats and attenuate extracellular matrix-related proteins associated with pressure overload. Western blotting was used to detect the TGF-β1/Smad signaling pathway protein expression of myocardial tissue, and it was further found that TEL could inhibit activation of the TGF-β1/Smad signaling pathway. In conclusion, TEL could inhibit myocardial local angiotensin II (Ang II) level by directly affecting the Ang II receptor. TEL may also restore the balance of matrix metalloproteinases/tissue inhibitor of metalloproteinases, reduce myocardial collagen fibrosis and delay hypertensive LVH by affecting the TGF-β1/Smad signaling pathway.
Abstract-Metabolic syndrome (MetS) is associated with nephropathy. Along with common risk factors such as hypertension and hyperglycemia, adipocytokines released from perirenal adipose tissue (PRAT) are implicated in the pathogenesis of MetS nephropathy. The study was designed to elucidate the adverse effects of PRAT-derived leptin on nephropathy and to determine whether the angiotensin II type 1 receptor antagonist telmisartan exerts a renoprotective effect by decreasing the PRAT-derived leptin level in the high-fat diet-induced MetS rat. In MetS rats, PRAT-derived leptin expression increased concomitant with dysfunction of adipogenesis, and the activities of the angiotensin II-angiotensin II type 1 receptor and the angiotensin-converting enzyme 2-angiotensin (1-7)-Mas receptor axes were imbalanced in PRAT. PRAT-derived leptin from MetS rats promoted proliferation of rat glomerular endothelial cells (GERs) by activating the p38 MAPK (mitogenactivated protein kinase) pathway, thereby contributing to the development of nephropathy. Long-term telmisartan treatment improved metabolic parameters and renal function, decreased the amount of PRAT, promoted adipogenesis, increased the expression of angiotensin-converting enzyme 2, restored balanced activities of the angiotensin II-AT1R and angiotensin-converting enzyme 2-angiotensin (1-7)-Mas axes, and exerted an indirect renoprotective effect on MetS rats by decreasing PRAT-derived leptin release. Our results demonstrate a novel link between nephropathy and PRAT in MetS and show that telmisartan confers an underlying protective effect on visceral adipose tissue and the kidney, suggesting that it has potential as a therapeutic agent for the treatment of MetS-associated nephropathy. (Hypertension. 2016;68:478-490.
Perivascular adipose tissue (PVAT)-derived leptin is a detrimental adipocytokine and plays a critical role in the development of cardiovascular diseases in metabolic syndrome (MetS). During vascular remodeling, vascular smooth muscle cells (VSMCs) undergo phenotypic switching into a synthetic phenotype characterized by decreased expression of differentiation markers (smooth muscle myosin heavy chain, α-smooth muscle actin, and calponin) and increased proliferation. We aimed to determine whether PVAT-derived leptin influences VSMC phenotypic switching and to explore the underlying mechanisms in MetS rats. In vivo, 32 Wistar rats were divided into two groups that received either a normal diet (control rat) or a high-fat diet (MetS rats). After 16 weeks, rat aortas were stained using hematoxylin-eosin and imaged. VSMC differentiation markers and proliferating cell nuclear antigen (PCNA), PVAT-derived leptin, aortic leptin receptor (ObR), and p38 mitogen-activated protein kinase (MAPK) expression were detected. In vitro, aortic VSMCs were incubated with MetS rat PVAT conditioned medium (PVAT-CM) to mimic in vivo conditions and were pretreated with a p38 MAPK inhibitor (SB 203580) or leptin antagonist. Differentiation marker expression, including PCNA and p38 MAPK, was detected. MetS rats exhibited pronounced insulin resistance, hyperglycemia, hyperlipidemia, hypertension, obesity, and an associated increase in PVAT weight. VSMCs underwent phenotypic switching in MetS rat aorta and contributed to vascular remodeling. PVAT-derived leptin expression was higher in MetS rats than in control rats (P < 0.01). ObRa expression and p38 MAPK phosphorylation were upregulated in MetS rat aorta. In vitro, VSMCs incubated with MetS rat PVAT-CM underwent phenotypic switching, associated with increased p38 MAPK phosphorylation. This VSMC phenotypic switching was inhibited by pretreatment with SB 203580 or a leptin antagonist. These results suggest that in MetS rats, PVAT-derived leptin promotes VSMC phenotypic switching via a p38 MAPK-dependent pathway to exacerbate vascular remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.