The dielectric function of bi-axially strained, intrinsic, and pseudomorphic Si1−xGex alloys was measured at room temperature using spectroscopic ellipsometry from 0.74 eV to 5.06 eV. Un-doped Si1−xGex with germanium compositions ranging from 0 to 75% was grown on Si (001) using chemical vapor deposition. High resolution x-ray diffraction was used to confirm sample composition, thickness, and strain. X-ray relaxation scans showed that all the samples were fully strained. All the alloy films in this study have low values of surface roughness, which allowed determination of the dielectric function. The presence of strain in the Si1−xGex alloys clearly altered the dielectric response. The bi-axial stress induced shift of the E1 and El + Δ1 critical point energies of pseudomorphic alloys can be described by the elastic response to the strain based on k*p theory [Lange et al., J. Appl. Phys. 80, 4578 (1996)]. Although the critical point energies of the alloys having higher germanium concentration showed deviations from the large shear approximation, the strain induced shift in critical point energy and the relative intensities of E1 and El + Δ1 were reasonably well described by the full elastic theory.
A multi-technique approach was used to determine the crystalline phase, texture, and electronic structure of Hf1−xZrxO2 (x = 0–1) high-k gate dielectric thin films grown by atomic layer deposition using a cyclical deposition and annealing method. X-ray diffraction (XRD) analysis performed in both grazing incidence and pole figure configurations identified the tetragonal phase for Zr/(Zr + Hf)% = 58% and a concomitant increase in tetragonal phase for further increase in Zr content. X-ray absorption spectroscopy (XAS) was used to determine the local atomic structure and metal oxide bond orientation. Polarization dependent XAS in normal and grazing incidence showed preferential metal-oxygen bond orientation consistent with the texturing observed by XRD. X-ray photoemission spectroscopy (XPS) and spectroscopic ellipsometry (SE) were also performed with special focus on spectral features which arise as a consequence of atomic ordering and specific crystalline phase. The combination of XAS, XPS, SE, and XRD enabled the determination of the effects of the deposition scheme and compositional alloying on the electronic structure, crystal field effects, optical properties, crystal phase, and texture for the mixed oxide alloy series. The multi-technique approach revealed the martensitic-like transformation of crystalline phase from monoclinic to tetragonal as the majority metal oxide concentration in the alloy mixture changed from HfO2 to ZrO2.
Characterization of the periodicity and strain state of an array of lithographically patterned silicon and silicon-germanium alloy on silicon fins using reciprocal space mapping of Bragg diffraction peaks is presented. Various patterned structures with different pitch values of 90 nm, 65 nm, and 42 nm have been studied and data for the 42 nm pitch sample is discussed in this paper. Diffraction from fin arrays is treated kinematically analogous to periodic surface grating structures. Diffraction from the symmetric 004 planes is used to calculate pitch and analyze the pitch walking pattern which appears as harmonic peaks on either side of the fin peaks. Pitch walking refers to the presence of two periodicities in the array due to the lithographic process. Longitudinal scans are evaluated at the fin peak positions to probe into the shape of the fin structure. Nonrectangular fin shapes resulted in peak splitting of the longitudinal scans of higher order fin peaks indicating a finite sidewall slope. Asymmetric 224 planes were analyzed to study the quality and strain-relaxation of the fin structures both parallel and perpendicular to the fin length using reciprocal space mapping techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.