This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Heating the carbonate rich precursor in an inert atmosphere produces a Co 2 P phase that is conductive. Addition of super P carbon resulted in an amorphous carbon coating on LiCoPO 4 particles. LiCoPO 4 /C nanorods with a co-existence of Co 2 P exhibit excellent discharge capacity with retention on multiple cycling.
AbstractLiCoPO 4 /C nanocomposite with growth controlled by carbonate anions was synthesized via a unique solid-state fusion method. Carbonate anions in the form of H 2 CO 3 or a mixture of H 2 CO 3 + (NH 4 ) 2 CO 3 have been used as a growth inhibiting modifier to produce morphology controlled lithium cobalt phosphate. The presence of cobalt phosphide (Co 2 P) as a second phase improved the conductivity and electrochemical properties of the parent LiCoPO 4. The formation of Co 2 P is found to be achievable only in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.