Hybrid inorganic-organic core-shell nanoparticles (CSNPs) are an emerging paradigm of nanodrug carriers in the targeted photodynamic therapy (TPDT) of cancer. Typically, metallic cores and organic polymer shells are used due to their submicron sizes and high surface to volume ratio of the metallic nanoparticles (NPs), combined with enhances solubility, stability, and absorption sites of the organic polymer shell. As such, the high loading capacity of therapeutic agents such as cancer specific ligands and photosensitizer (PS) agents is achieved with desired colloidal stability, drug circulation, and subcellular localization of the PS agents at the cancer site. This review highlights the synthesis methods, characterization techniques, and applications of hybrid inorganic-organic CSNPs as loading platforms of therapeutic agents for use in TPDT. In addition, cell death pathways and the mechanisms of action that hybrid inorganic-organic core-shell nanodrug systems follow in TPDT are also reviewed. Nanodrug systems with cancer specific properties are able to localize within the solid tumor through the enhanced permeability effect (EPR) and bind with affinity to receptors on the cancer cell surfaces, thus improving the efficacy of short-lived cytotoxic singlet oxygen. This ability by nanodrug systems together with their mechanism of action during cell death forms the core basis of this review and will be discussed with an overview of successful strategies that have been reported in the literature.
This work reports for the first time on the synthesis, characterization, and photodynamic therapy effect of a novel water-soluble zinc (II) 2(3), 9(10), 16(17), 23(24)-tetrakis-(sodium 2-mercaptoacetate) phthalocyanine (ZnPcTS41), on metastatic melanoma cells (A375) combined with cannabidiol (CBD). The ZnPcTS41 structure was confirmed using FTIR, NMR, MS, and elemental analysis while the electronic absorption spectrum was studied using UV-VIS. The study reports further on the dose-dependent effects of ZnPcTS41 (1–8 µM) and CBD alone (0.3–1.1 µM) at 636 nm with 10 J/cm2 on cellular morphology and viability. The IC50 concentrations of ZnPcTS41 and CBD were found to be 5.3 µM and 0.63 µM, respectively. The cytotoxicity effects of the ZnPcTS41 enhanced with CBD on A375 cells were assessed using MTT cell viability assay, ATP cellular proliferation and inverted light microscopy. Cell death induction was also determined via Annexin V-FITC-PI. The combination of CBD- and ZnPcTS41-mediated PDT resulted in a significant reduction in cell viability (15%***) and an increase in the late apoptotic cell population (25%*). These findings suggest that enhancing PDT with anticancer agents such as CBD could possibly obliterate cancer cells and inhibit tumor recurrence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.