Creatine is a nonessential dietary component that, when supplemented in the diet, has shown physiological benefits in athletes, in animal-based models of disease and in patients with various muscle, neurological and neuromuscular disease. The clinical relevance of creatine supplementation is based primarily on its role in ATP generation, and cells may be able to better handle rapidly changing energy demands with supplementation. Although the pharmacological outcome measures of creatine have been investigated, the behaviour of creatine in the blood and muscle is still not fully understood. Creatine is most probably actively absorbed from the gastrointestinal tract in a similar way to amino acids and peptides. The distribution of creatine throughout the body is largely determined by the presence of creatine transporters. These transporters not only serve to distribute creatine but serve as a clearance mechanism because of creatine 'trapping' by skeletal muscle. Besides the pseudo-irreversible uptake by skeletal muscle, creatine clearance also depends on renal elimination and degradation to creatinine. Evidence suggests that creatine pharmacokinetics are nonlinear with respect to dose size and frequency. Skeletal muscle, the largest depot of creatine, has a finite capacity to store creatine. As such, when these stores are saturated, both volume of distribution and clearance can decrease, thus leading to complex pharmacokinetic situations. Additionally, other dietary components such as caffeine and carbohydrate can potentially affect pharmacokinetics by their influence on the creatine transporter. Disease and age may also affect the pharmacokinetics, but more information is needed. Overall, there are very limited pharmacokinetic data available for creatine, and further studies are needed to define absorption characteristics, clearance kinetics and the effect of multiple doses. Additionally, the relationship between plasma creatine and muscle creatine needs to be elucidated to optimise administration regimens.
There has been an increased emphasis on scholarly activities by health sciences faculty members given the importance of the promotion of public health over the last 50 years. Consequently, faculty members are required to place greater emphasis on scholarly activities while maintaining their teaching and service responsibilities. This increasing requirement of scholarly activities has placed great demands on clinical practice faculty members and it has made their management of clinical practice, teaching responsibilities, and expectations for promotion and tenure a difficult task. This retrospective literature review identifies barriers to the scholarship activities of clinical faculty members in dentistry, medicine, nursing, and pharmacy and discusses strategies for enabling faculty members to pursue scholarly activities in the current health science academic environment. The review indicates commonalities of barriers across these 4 disciplines and suggests strategies that could be implemented by all of these disciplines to enable clinical practice faculty members to pursue scholarly activities.
This study examined the effect of estrogen replacement on soleus muscle size and contractile function in ovariectomized rats during physiological growth. Seven week old female Sprague-Dawley rats were assigned to one of three treatment groups: (1) control animals (SHAM), (2) ovariectomized animals without estrogen replacement (OVX/CO), and (3) ovariectomized animals with 17 beta-estradiol replacement (OVX/E2). OVX/CO and OVX/E2 animals were pair-fed to SHAM animals to rule out the potentially confounding effect of differences in food intake. Rats were sacrificed 4 weeks after surgery and the soleus muscle was removed for analysis. Estrogen replacement reduced body weight, relative body weight gain, and soleus muscle fiber size despite all groups having a similar food intake. Ovariectomy alone had no effect on any of these parameters suggesting that estrogen may inhibit skeletal muscle growth when it is the only ovarian hormone present. Neither ovariectomy nor estrogen replacement affected maximal specific isometric force. Estrogen replacement increased half relaxation time. Ovariectomy resulted in a reduction in time to peak tension that was reversed with estrogen replacement. This reduction was not accompanied by a change in myosin heavy chain composition implying that calcium handling may have been altered. Results from this study suggest that estrogen affects skeletal muscle growth and twitch kinetics.
The role of liposome composition and temperature in the distribution of amphotericin B (AmB) with serum lipoproteins and the role of particle charge in AmB transfer to serum lipoproteins were determined. Serum obtained from healthy volunteers was incubated with known concentrations of AmB or different liposomal formulations of AmB (1 to 100 ,ug/ml) at 37°C for various time intervals (5, 10, 20, 30, 45, and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.