Ataxia-telangiectasia mutated and Rad3 related (ATR)-Seckel syndrome and autosomal recessive primary microcephaly (MCPH) syndrome share clinical features. RNA interference (RNAi) of MCPH1 have implicated the protein it encodes as a DNA-damage response protein that regulates the transcription of Chk1 and BRCA1, two genes involved in the response to DNA damage. Here, we report that truncating mutations observed in MCPH-syndrome patients do not impact on Chk1 or BRCA1 expression or early ATR-dependent damage-induced phosphorylation events. However, like ATR-Seckel syndrome cells, MCPH1-mutant cell lines show defective G2-M checkpoint arrest and nuclear fragmentation after DNA damage, and contain supernumerary mitotic centrosomes. MCPH1-mutant and ATR-Seckel cells also show impaired degradation of Cdc25A and fail to inhibit Cdc45 loading onto chromatin after replication arrest. Additionally, microcephalin interacts with Chk1. We conclude that MCPH1 has a function downstream of Chk1 in the ATR-signalling pathway. In contrast with ATR-Seckel syndrome cells, MCPH1-mutant cells have low levels of Tyr 15-phosphorylated Cdk1 (pY15-Cdk1) in S and G2 phases, which correlates with an elevated frequency of G2-like cells displaying premature chromosome condensation (PCC). Thus, MCPH1 also has an ATR-independent role in maintaining inhibitory Cdk1 phosphorylation, which prevents premature entry into mitosis.
Nijmegen breakage syndrome (NBS) is characterised by microcephaly, developmental delay, characteristic facial features, immunodeficiency and radiosensitivity. Nbs1, the protein defective in NBS, functions in ataxia telangiectasia mutated protein (ATM)-dependent signalling likely facilitating ATM phosphorylation events. While NBS shares overlapping characteristics with ataxia telangiectasia, it also has features overlapping with ATR-Seckel (ATR: ataxia-telangiectasia and Rad3-related protein) syndrome, a subclass of Seckel syndrome mutated in ATR. We show that Nbs1 also facilitates ATR-dependent phosphorylation. NBS cell lines show a similar defect in ATR phosphorylation of Chk1, c-jun and p-53 in response to UV irradiationand hydroxyurea (HU)-induced replication stalling. They are also impaired in ubiquitination of FANCD2 after HU treatment, which is ATR dependent. Following HU-induced replication arrest, NBS and ATR-Seckel cells show similarly impaired G2/M checkpoint arrest and an impaired ability to restart DNA synthesis at stalled replication forks. Moreover, NBS cells fail to retain ATR in the nucleus following HU treatment and extraction. Our findings suggest that Nbs1 functions in both ATR-and ATMdependent signalling. We propose that the NBS clinical features represent the result of these combined defects.
To date, the only reported genetic defect identified in the developmental disorder, Seckel syndrome, is a mutation in ataxia telangiectasia and Rad3-related protein (ATR). Seckel syndrome is clinically and genetically heterogeneous and whether defects in ATR significantly contribute to Seckel syndrome is unclear. Firstly, we characterize ATR-Seckel cells for their response to DNA damage. ATR-Seckel cells display impaired phosphorylation of ATR-dependent substrates, impaired G2/M checkpoint arrest and elevated micronucleus (MN) formation following exposure to UV and agents that cause replication stalling. We describe a novel phenotype, designated nuclear fragmentation (NF), that occurs following replication arrest. Finally, we report that ATR-Seckel cells have an endogenously increased number of centrosomes in mitotic cells demonstrating a novel role for ATR in regulating centrosome stability. We exploit these phenotypes to examine cell lines derived from additional unrelated Seckel syndrome patients. We show that impaired phosphorylation of ATR-dependent substrates is a common but not invariant feature of Seckel syndrome cell lines. In contrast, all cell lines displayed defective G2/M arrest, increased levels of NF and MN formation following exposure to agents that cause replication stalling. All the Seckel syndrome cell lines examined showed increased endogenous centrosome numbers. Though ATR cDNA can complement the defects in ATR-Seckel cells, it failed to complement any of the additional cell lines. We conclude that Seckel syndrome represents a further damage response disorder that is uniquely associated with defects in the ATR-signalling pathway resulting in failed checkpoint arrest following exposure to replication fork stalling.
Peinado and colleagues find that exosomes produced by tumour cells can mediate premetastatic niche formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.