Intraperitoneal administration of guanosine to rats with chronic spinal cord injury stimulates remyelination and functional recovery. If guanosine produced its effects in the nervous system, it should enter it and elevate endogenous concentrations. [(3)H]-guanosine (8 mg/kg) was administered intraperitoneally to rats and its distribution and concentration in different sites determined. Guanosine rapidly entered all tissues; its concentration peaked at about 15 minutes except in adipose tissue and CNS where it continued to rise for 30 minutes. Its chief metabolic product in all sites was guanine with over twice as much guanine as guanosine present in CNS after 30 minutes.
Among P2 metabotropic ATP receptors, P2Y2 subtype seems to be peculiar as its upregulation triggers important biological events in different cells types. In non-stimulated cells including astrocytes, P2Y2 receptors are usually expressed at levels lower than P2Y1 sites, however the promoter region of the P2Y2 receptors has not yet been studied and little is known about the mechanisms underlying the regulation of the expression of this ATP receptor. We showed that not only UTP and ATP are the most potent and naturally occurring agonist for P2Y2 sites, but also guanosine induced an up-regulation of astrocyte P2Y2 receptor mRNA evaluated by Northern blot analysis. We also focused our attention on this nucleoside since in our previous studies it was reported to be released by cultured astrocytes and to exert different neuroprotective effects. UTP and guanosine-evoked P2Y2 receptor up-regulation in rat brain cultured astrocytes was linked to an increased P2Y2-mediated intracellular calcium response, thus suggesting an increased P2Y2 activity. Actinomycin D, a RNA polymerase inhibitor, abrogated both UTP and guanosine-mediated P2Y2 up-regulation, thus indicating that de novo transcription was required. The effect of UTP and guanosine was also evaluated in astrocytes pretreated with different inhibitors of signal transduction pathways including ERK, PKC and PKA reported to be involved in the regulation of other cell surface receptor mRNAs. The results show that ERK1-2/MAPK pathway play a key role in the P2Y2 receptor up-regulation mediated by either UTP or guanosine. Moreover, our data suggest that PKA is also involved in guanosine-induced transcriptional activation of P2Y2 mRNA and that increased intracellular calcium levels and PKC activation may also mediate P2Y2 receptor up-regulation triggered by UTP. The extracellular release of ATP under physiological and pathological conditions has been widely studied. On the contrary, little is known about the release of pyrimidines and in particular of UTP. Here we show that astrocytes are able to release UTP, either at rest or during and following hypoxia/hypoglycemia obtained by submitting the cells to glucose-oxygen deprivation (OGD). Interestingly, also P2Y2 receptor mRNA increased by about two-fold the control values when the cultures were submitted to OGD. It has been recently reported that P2Y2 receptors can play a protective role in astrocytes, thus either guanosine administration or increased extracellular concentrations of guanosine and UTP reached locally following CNS injury may increase P2Y2-mediated biological events aimed at promoting a protective astrocyte response.
Wound healing is a complex sequence of cellular and molecular processes that involves multiple cell types and biochemical mediators. Several growth factors have been identified that regulate tissue repair, including the neurotrophin nerve growth factor (NGF). As non-adenine based purines (NABPs) are known to promote cell proliferation and the release of growth factors, we investigated whether NABPs had an effect on wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đŸ’™ for researchers
Part of the Research Solutions Family.