Vascularization is fundamental for bone formation and bone tissue homeostasis. However, in human subjects, a direct molecular relationship has not been identified between angiogenesis and agents that promote bone disease or factors related to age. Osteopenia is a condition in which bone mineral density is lower than normal, and it represents a sign of normal aging. Here we tested whether the type H vessel, which was recently identified as strongly positive for CD31 and Endomucin (CD31hiEmcnhi) in mice, is an important indicator of aging and osteopenia in human subjects. We found that age-dependent losses of type H vessels in human bone sections conform to the observations in aged mice. The abundance of human type H vessels and osteoprogenitors may be relevant to changes in the skeletal microarchitecture and advanced osteopenia. Furthermore, ovariectomized mice, a widely used model for postmenopausal osteoporosis, exhibited significantly reduced type H vessels accompanied by reduced osteoprogenitors, which is consistent with impaired bone microarchitecture and osteoporosis, suggesting that this feature is an indicator of bone mass independent of aging. More importantly, administration of desferrioxamine led to significantly increased bone mass via enhanced angiogenesis and increased type H vessels in ovariectomized mice. Altogether, these data represent a novel finding that type H vessels are regulated in aged and osteopenia subjects. The abundance of human type H vessels is an early marker of bone loss and represents a potential target for improving bone quality via the induction of type H vessels.
Host cellular receptors play key roles in the determination of virus tropism and pathogenesis. However, little is known about SARS-CoV-2 host receptors with the exception of ACE2. Furthermore, ACE2 alone cannot explain the multi-organ tropism of SARS-CoV-2 nor the clinical differences between SARS-CoV-2 and SARS-CoV, suggesting the involvement of other receptor(s). Here, we performed genomic receptor profiling to screen 5054 human membrane proteins individually for interaction with the SARS-CoV-2 capsid spike (S) protein. Twelve proteins, including ACE2, ASGR1, and KREMEN1, were identified with diverse S-binding affinities and patterns. ASGR1 or KREMEN1 is sufficient for the entry of SARS-CoV-2 but not SARS-CoV in vitro and in vivo. SARS-CoV-2 utilizes distinct ACE2/ASGR1/KREMEN1 (ASK) receptor combinations to enter different cell types, and the expression of ASK together displays a markedly stronger correlation with virus susceptibility than that of any individual receptor at both the cell and tissue levels. The cocktail of ASK-related neutralizing antibodies provides the most substantial blockage of SARS-CoV-2 infection in human lung organoids when compared to individual antibodies. Our study revealed an interacting host receptome of SARS-CoV-2, and identified ASGR1 and KREMEN1 as alternative functional receptors that play essential roles in ACE2-independent virus entry, providing insight into SARS-CoV-2 tropism and pathogenesis, as well as a community resource and potential therapeutic strategies for further COVID-19 investigations.
bThe interferon (IFN)-inducible viperin protein restricts a broad range of viruses. However, whether viperin plays a role during herpes simplex virus 1 (HSV-1) infection is poorly understood. In the present study, it was shown for the first time that wild-type (WT) HSV-1 infection couldn't induce viperin production, and ectopically expressed viperin inhibited the replication of UL41-null HSV-1 but not WT viruses. The underlying molecular mechanism is that UL41 counteracts viperin's antiviral activity by reducing its mRNA accumulation. Viperin is a highly conserved, 361-amino-acid protein. It was first identified as a gamma interferon (IFN-␥)-inducible protein which is directly induced by human cytomegalovirus (HCMV), and its constitutive expression is low (1). The viperin gene (also known as cig5 or RASD2) can also be categorized as an antiviral interferon-stimulated gene (ISG) which limits the replication of many DNA and RNA viruses (1-14). However, whether viperin plays a role during herpes simplex virus 1 (HSV-1) infection is unknown.To investigate whether HSV-1 could induce the expression of viperin, HEK293T cells were infected with wild-type (WT) HSV-1 at different multiplicities of infection (MOI) or with Sendai virus (SeV) (15). Infection with SeV induced a significant amount of viperin; however, infection with a low MOI (0.2) of HSV-1 induced only a trace amount of viperin, and infection with a moderate MOI (2) abrogated the expression of viperin (Fig. 1A).To further explore whether viperin could inhibit the replication of WT HSV-1, HEK293T cells with ectopic expression of viperin-Flag were infected with HSV-1 at an MOI of 0.2. Then cells were harvested at the time points indicated in the figures, and viral plaque assay was performed to determine viral replication (16). As a result, ectopically expressed viperin did not affect the replication of WT HSV-1 (Fig. 1B). The data from Western blot (WB) analysis also showed that viperin did not affect viral protein expression (Fig. 1C). These results demonstrated that ectopic expression of viperin failed to inhibit the replication of WT HSV-1.The aforementioned data led us to hypothesize that at least one of the HSV-1 proteins could counteract the expression of viperin. As a member of the ISGs, viperin was effectively induced by SeV ( Fig. 1) (15). With a high-throughput screen assay of all 84 proteins carried by HSV-1, dual-luciferase reporter gene assays were performed in HEK293T cells cotransfected with viperin-luciferase reporter plasmid and individual HSV-1 protein expression plasmid for 20 h and infected with SeV (17). As a result, ectopically expressed UL41 abrogated the expression of viperin; however, other HSV-1 proteins did not (data not shown). UL41 has been reported to degrade both viral and cellular mRNAs (18)(19)(20)(21)(22)(23)(24)(25)(26). Recently, mRNA of tetherin has been reported to be degraded by UL41 (27). Meanwhile, ICP0, an E3 ubiquitin ligase, promotes degradation of many cellular antiviral proteins, such as IRF3, IRF7, IFI16, and ATRX ...
Host cellular receptors are key determinants of virus tropism and pathogenesis. Virus utilizes multiple receptors for attachment, entry, or specific host responses. However, other than ACE2, little is known about SARS-CoV-2 receptors. Furthermore, ACE2 cannot easily interpret the multi-organ tropisms of SARS-CoV-2 nor the clinical differences between SARS-CoV-2 and SARS-CoV. To identify host cell receptors involved in SARS-CoV-2 interactions, we performed genomic receptor profiling to screen almost all human membrane proteins, with SARS-CoV-2 capsid spike (S) protein as the target. Twelve receptors were identified, including ACE2. Most receptors bind at least two domains on S protein, the receptor-binding-domain (RBD) and the N-terminal-domain (NTD), suggesting both are critical for virus-host interaction. Ectopic expression of ASGR1 or KREMEN1 is sufficient to enable entry of SARS-CoV-2, but not SARS-CoV and MERS-CoV. Analyzing single-cell transcriptome profiles from COVID-19 patients revealed that virus susceptibility in airway epithelial ciliated and secretory cells and immune macrophages highly correlates with expression of ACE2, KREMEN1 and ASGR1 respectively, and ACE2/ASGR1/KREMEN1 (ASK) together displayed a much better correlation than any individual receptor. Based on modeling of systemic SARS-CoV-2 host interactions through S receptors, we revealed ASK correlation with SARS-CoV-2 multi-organ tropism and provided potential explanations for various COVID-19 symptoms. Our study identified a panel of SARS-CoV-2 receptors with diverse binding properties, biological functions, and clinical correlations or implications, including ASGR1 and KREMEN1 as the alternative entry receptors, providing insights into critical interactions of SARS-CoV-2 with host, as well as a useful resource and potential drug targets for COVID-19 investigation.
ET improves cardiorespiratory fitness among obese adolescents; however, owing to lack of compliance, the influence of exercise intensity on insulin sensitivity and hepatic triglycerides remains unclear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.