Transduction mechanisms were investigated in human olfactory neurons by determining characteristics of odorant-induced changes in intracellular calcium concentration ([Ca2+]i). Olfactory neurons were freshly isolated from nasal biopsies, allowed to attach to coverslips, and loaded with the calcium-sensitive indicator fura-2. Changes in [Ca2+]i were studied in response to exposure to individual odors, or odorant mixtures composed to distinguish between transduction pathways mediated by adenosine 3'5'-monophosphate (cAMP; mix A) or inositol 1,4,5-trisphosphate (InsP3; mix B). Overall, 52% of biopsies produced one or more odorant-responsive olfactory neurons, whereas 24% of all olfactory neurons tested responded to odorant exposure with a change in [Ca2+]i. As in olfactory neurons from other species, the data suggest that odorant exposure elicited calcium influx via second-messenger pathways involving cAMP or InsP3. Unlike olfactory neurons from other species that have been tested, some human olfactory neurons responded to odorants with decreases in [Ca2+]i. Also in contrast with olfactory neurons from other species, human olfactory neurons were better able to discriminate between odorant mixtures in that no neuron responded to more than one type of odor or mixture. These results suggest the presence of a previously unreported type of olfactory transduction mechanism, and raise the possibility that coding of odor qualities in humans may be accomplished to some degree differently than in other vertebrates, with the olfactory neuron itself making a greater contribution to the discrimination process.
1. Adaptation and disadaptation rates determine the temporal response properties of sensory receptor cells. In chemoreception, temporal filter properties of receptor cells are poorly understood. We studied the time course of disadaptation in lobster antennular chemoreceptor cells by using in situ high-resolution stimulus measurement and extracellularly recorded spike responses. Fifteen receptor cells were each tested with two series (one at 10 microM, one at 100 microM) of three odor (hydroxyproline) pulses: a 200-ms test pulse, a 5-s adapting pulse, and a 200-ms probe pulse after time intervals ranging from 1 to 60 s. After complete adaptation by the adapting pulse, individual cells recovered at different rates. After 1 s, a third of the cells responded with a mean response of 3 spikes/cell, representing approximately 20% recovery. All cells fully recovered between 10 and 30 s. Mean full recovery was within 25 s, with a time constant of 14 s, independent of stimulus concentration.
An important step in establishing and utilizing a cell culture system for the in vitro study of olfaction is assessing whether the cultured cells possess physiological properties similar to those of mature olfactory neurons. Various investigators have successfully established proliferating cell lines from olfactory tissue, but few have demonstrated the characteristics of odor sensitivity of these cells. We successfully established cultured cell lines from adult human olfactory tissue obtained using an olfactory biopsy procedure and measured their ability to respond to odor stimulation using calcium imaging techniques. A subset of the human olfactory cells in culture displayed a distinct morphology and specifically expressed immunocytochemical markers characteristic of mature human olfactory neurons such as OMP, Golf, NCAM and NST. Under defined growth conditions, these cultured cells responded to odorant mixes that have been previously shown to elicit intracellular calcium changes in acutely‐isolated human olfactory neurons. These odorant‐elicited calcium responses displayed characteristics similar to those found in mature human olfactory neurons. First, cultured cells responded with either increases or decreases in intracellular calcium. Second, increases in calcium were abolished by removal of extracellular calcium. Third, inhibitors of the olfactory signal transduction cascades reversibly blocked these odorant‐elicited intracellular calcium changes. Our results demonstrate that cultures of adult human olfactory cells established from olfactory biopsies retain some of the in vivo odorant response characteristics of acutely isolated cells from the adult olfactory epithelium. This work has important ramifications for investigation of olfactory function and dysfunction using biopsy procedures and in vitro assays of odor sensitivity. J. Neurosci. Res. 62:737–749, 2000. © 2000 Wiley‐Liss, Inc.
The olfactory epithelium constitutes the sole source of regenerating neural cells that can be obtained from a living human. As such, primary cultures derived from olfactory epithelial biopsies can be utilized to study neurobiological characteristics of individuals under different conditions and disease states. Here, using such cultures, we report in vitro generation of cells that exhibit a complex neuronal phenotype, encompassing receptors and signaling pathways pertinent to both olfaction and other aspects of CNS function. Using in situ hybridization, we demonstrate for the first time the native expression of olfactory receptors in cultured cells derived from olfactory epithelial tissue. We further establish the presence and function of olfactory transduction molecules in these cells using immunocytochemistry, calcium imaging and molecular methods. Western blot analysis revealed the expression of neurotransmitter receptors for dopamine (D2R), serotonin (5HT2C) and NMDA subtypes 1 and 2A/2B. Stimulation with dopamine or serotonin enhanced receptor G protein activation in a subtype specific manner, based on 35S-GTP incorporation assay. Functional characteristics of the cultured cells are demonstrated through enhanced tyrosine phosphorylation of NMDAR 2A/2B and recruitment of signaling partners in response to NMDA stimulation. The array of neuronal characteristics observed here establish that proliferating cells derived from the human olfactory epithelium differentiate in vitro to express functional and molecular attributes of mature olfactory neurons. These cultured neural cells exhibit neurotransmitter pathways important in a number of neuropsychiatric disorders. Their ready availability from living humans thus provides a *
This study demonstrates the feasibility of using olfactory receptor neurons to examine alterations in intracellular signaling in neuronal cells from living patients. Our results, although based on a small number of subjects, suggest that altered intracellular calcium signaling in olfactory receptor neurons may be a trait of bipolar disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.