SUMMARYNeural precursors in the developing olfactory epithelium (OE) give rise to three major neuronal classes -olfactory receptor (ORNs), vomeronasal (VRNs) and gonadotropin releasing hormone (GnRH) neurons. Nevertheless, the molecular and proliferative identities of these precursors are largely unknown. We characterized two precursor classes in the olfactory epithelium (OE) shortly after it becomes a distinct tissue at midgestation in the mouse: slowly dividing self-renewing precursors that express Meis1/2 at high levels, and rapidly dividing neurogenic precursors that express high levels of Sox2 and Ascl1. Precursors expressing high levels of Meis genes primarily reside in the lateral OE, whereas precursors expressing high levels of Sox2 and Ascl1 primarily reside in the medial OE. Fgf8 maintains these expression signatures and proliferative identities. Using electroporation in the wild-type embryonic OE in vitro as well as Fgf8, Sox2 and Ascl1 mutant mice in vivo, we found that Sox2 dose and Meis1 -independent of Pbx co-factors -regulate Ascl1 expression and the transition from lateral to medial precursor state. Thus, we have identified proliferative characteristics and a dose-dependent transcriptional network that define distinct OE precursors: medial precursors that are most probably transit amplifying neurogenic progenitors for ORNs, VRNs and GnRH neurons, and lateral precursors that include multi-potent self-renewing OE neural stem cells.
BackgroundVideofluoroscopic swallow study (VFSS) is the gold standard for diagnosis of dysphagia in veterinary medicine but lacks standardized protocols that emulate physiologic feeding practices. Age impacts swallow function in humans but has not been evaluated by VFSS in dogs.Hypothesis/ObjectivesTo develop a protocol with custom kennels designed to allow free‐feeding of 3 optimized formulations of contrast media and diets that address limitations of current VFSS protocols. We hypothesized that dogs evaluated by a free‐feeding VFSS protocol would show differences in objective swallow metrics based on age.AnimalsHealthy juvenile, adult, and geriatric dogs (n = 24).MethodsProspective, experimental study. Custom kennels were developed to maintain natural feeding behaviors during VFSS. Three food consistencies (thin liquid, pureed food, and dry kibble) were formulated with either iohexol or barium to maximize palatability and voluntary prehension. Dogs were evaluated by 16 swallow metrics and compared across age groups.ResultsDevelopment of a standardized VFSS protocol resulted in successful collection of swallow data in healthy dogs. No significant differences in swallow metrics were observed among age groups. Substantial variability was observed in healthy dogs when evaluated under these physiologic conditions. Features typically attributed to pathologic states, such as gastric reflux, were seen in healthy dogs.Conclusions and Clinical ImportanceDevelopment of a VFSS protocol that reflects natural feeding practices may allow emulation of physiology resulting in clinical signs of dysphagia. Age did not result in significant changes in swallow metrics, but additional studies are needed, particularly in light of substantial normal variation.
The birth and differentiation of neurons have been extensively studied in the olfactory epithelium (OE) of rodents but not in humans. The goal of this study was to characterize cellular composition and molecular expression of human OE in vivo and in vitro. In rodent OE, there are horizontal basal cells and globose basal cells that are morphologically and functionally distinct. In human OE, however, there appears to be no morphological distinction among basal cells, with almost all cells having round cell bodies similar to rodent globose basal cells. Unlike the case in rodents, human basal cells, including putative neuronal precursors, express p75NGFR, suggesting a distinctive role for p75NGFR in human OE neurogenesis. Molecular expression of neuronal cells during differentiation in human OE grossly follows that in rodents. However, the topographical organization of immature and mature ORNs in human OE differs from that of rodents, in that immature and mature ORNs in humans are dispersed throughout the OE, whereas rodent counterparts have a highly laminar organization. These observations together suggest that the birth and differentiation of neuronal cells in human OE differ from those in rodents. In OE explant culture, neuronal cells derived from human OE biopsy express markers for immature and mature neurons, grossly recapitulating neuronal differentiation of olfactory neurons in vivo. Furthermore, small numbers of cells are doubly label for bromodeoxyuridine and olfactory marker protein, indicating that neuronal cells born in vitro reach maturity. These data highlight species-related differences in OE development and demonstrate the utility of explant culture for experimental studies of human neuronal development.
Transduction mechanisms were investigated in human olfactory neurons by determining characteristics of odorant-induced changes in intracellular calcium concentration ([Ca2+]i). Olfactory neurons were freshly isolated from nasal biopsies, allowed to attach to coverslips, and loaded with the calcium-sensitive indicator fura-2. Changes in [Ca2+]i were studied in response to exposure to individual odors, or odorant mixtures composed to distinguish between transduction pathways mediated by adenosine 3'5'-monophosphate (cAMP; mix A) or inositol 1,4,5-trisphosphate (InsP3; mix B). Overall, 52% of biopsies produced one or more odorant-responsive olfactory neurons, whereas 24% of all olfactory neurons tested responded to odorant exposure with a change in [Ca2+]i. As in olfactory neurons from other species, the data suggest that odorant exposure elicited calcium influx via second-messenger pathways involving cAMP or InsP3. Unlike olfactory neurons from other species that have been tested, some human olfactory neurons responded to odorants with decreases in [Ca2+]i. Also in contrast with olfactory neurons from other species, human olfactory neurons were better able to discriminate between odorant mixtures in that no neuron responded to more than one type of odor or mixture. These results suggest the presence of a previously unreported type of olfactory transduction mechanism, and raise the possibility that coding of odor qualities in humans may be accomplished to some degree differently than in other vertebrates, with the olfactory neuron itself making a greater contribution to the discrimination process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.