Protein replacement therapy (PRT) has been applied to treat severe monogenetic/metabolic disorders characterized by a protein deficiency. In disorders where an intracellular protein is missing, PRT is not easily feasible due to the inability of proteins to cross the cell membrane. Instead, gene therapy has been applied, although still with limited success. β-Thalassemias are severe congenital hemoglobinopathies, characterized by deficiency or reduced production of the adult β-globin chain. The resulting imbalance of α-/β-globin chains of adult hemoglobin (α 2 β 2 ) leads to precipitation of unpaired α-globin chains and, eventually, to defective erythropoiesis. Since protein transduction domain (PTD) technology has emerged as a promising therapeutic approach, we produced a human recombinant β-globin chain in fusion with the TAT peptide and successfully transduced it into human proerythroid K-562 cells, deficient in mature β-globin chain. Notably, the produced human recombinant β-globin chain without the TAT peptide, used as internal negative control, failed to be transduced into K-562 cells under similar conditions. In silico studies complemented by SDS−PAGE, Western blotting, co-immunoprecipitation and LC−MS/MS analysis indicated that the transduced recombinant fusion TAT−β-globin protein interacts with the endogenous native α-like globins to form hemoglobin α 2 β 2 -like tetramers to a limited extent. Our findings provide evidence that recombinant TAT−β-globin is transmissible into proerythroid K-562 cells and can be potentially considered as an alternative protein therapeutic approach for β-thalassemias.
Information Technology (IT) and specialized systems could have a prominent role towards the support of drug safety processes, both in the clinical context but also beyond that. PVClinical project aims to build an IT platform, enabling the investigation of potential Adverse Drug Reactions (ADRs). In this paper, we outline the utilization of Observational Medical Outcomes Partnership – Common Data Model (OMOP-CDM) and the openly available Observational Health Data Sciences and Informatics (OHDSI) software stack as part of PVClinical platform. OMOP-CDM offers the capacity to integrate data from Electronic Health Records (EHRs) (e.g., encounters, patients, providers, diagnoses, drugs, measurements and procedures) via an accepted data model. Furthermore, the OHDSI software stack provides valuable analytics tools which could be used to address important questions regarding drug safety quickly and efficiently, enabling the investigation of potential ADRs in the clinical environment.
Introduction Information technology (IT) plays an important role in the healthcare landscape via the increasing digitization of medical data and the use of modern computational paradigms such as machine learning (ML) and knowledge graphs (KGs). These 'intelligent' technical paradigms provide a new digital 'toolkit' supporting drug safety and healthcare processes, including 'active pharmacovigilance'. While these technical paradigms are promising, intelligent systems (ISs) are not yet widely adopted by pharmacovigilance (PV) stakeholders, namely the pharma industry, academia/research community, drug safety monitoring organizations, regulatory authorities, and healthcare institutions. The limitations obscuring the integration of ISs into PV activities are multifaceted, involving technical, legal and medical hurdles, and thus require further elucidation. Objective We dissect the abovementioned limitations by describing the lessons learned during the design and implementation of the PVClinical platform, a web platform aiming to support the investigation of potential adverse drug reactions (ADRs), emphasizing the use of knowledge engineering (KE) as its main technical paradigm. Results To this end, we elaborate on the related 'business processes' (i.e. operational processes) and 'user goals' identified as part of the PVClinical platform design process based on Design Thinking principles. We also elaborate on key challenges restricting the adoption of such ISs and their integration in the clinical setting and beyond. Conclusions We highlight the fact that beyond providing analytics and useful statistics to the end user, 'actionability' has emerged as the operational priority identified through the whole process. Furthermore, we focus on the needs for valid, reproducible, explainable and human-interpretable results, stressing the need to emphasize on usability.
The inflammatory cytokine Stem Cell Factor (SCF, ligand of c-kit receptor) has been implicated as a pro-oncogenic driver and an adverse prognosticator in several human cancers. Increased SCF levels have recently been reported in a small series of patients with chronic lymphocytic leukemia (CLL), however its precise role in CLL pathophysiology remains elusive. In this study, CLL cells were found to predominantly express the membrane isoform of SCF that is known to elicit a more robust activation of the c-kit receptor. SCF was significantly overexpressed in CLL cells compared to healthy tonsillar B cells whilst it correlated with adverse-prognostic biomarkers, shorter time-to-first treatment and shorter overall survival. Activation of immune receptors and long-term cell-cell interactions with the mesenchymal stroma led to an elevation of SCF primarily in adverse-prognostic CLL cases. On the contrary, suppression of oxidative stress and the BTK inhibitor Ibrutinib negated SCF levels. Interestingly, SCF significantly correlated with mitochondrial dynamics and HIF-1α which have previously been linked with clinical aggressiveness in CLL. SCF was able to elicit direct biological effects in CLL cells affecting redox homeostasis and cell proliferation. Overall, the aberrantly expressed SCF in CLL cells emerges as a key response regulator to microenvironmental stimuli whilst correlating with poor prognosis. On these grounds, specific targeting of this inflammatory molecule could serve as a novel therapeutic approach in CLL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.