The role of cellular membranes in thymocyte apoptosis has been examined. Trolox, a water soluble analogue of vitamin E and inhibitor of membrane damage, inhibits DNA fragmentation in thymocytes exposed to gamma-radiation. Trolox is most effective in inhibiting DNA fragmentation when added to cells within 30 min post-irradiation. Exposure to trolox only during irradiation did not prevent DNA fragmentation, suggesting that it does not work by scavenging free radicals generated during radiation exposure. Incubation of the irradiated cell suspension with trolox for 2 h post-irradiation was sufficient to prevent DNA fragmentation measured at 24 h in irradiated cells. This suggests that trolox irreversibly inhibits a cellular lesion required for apoptosis. The induction of DNA fragmentation appears to be related to a concurrent, pronounced flow of Ca2+ into the cell. At 3 h post-irradiation the amount of Ca2+ in irradiated thymocytes was more than twice that of unirradiated thymocytes. Membrane damage has been shown to affect the transport of Ca2+. Trolox treatment completely blocked the radiation-induced influx of Ca2+ into the thymocytes. These results suggest that membrane damage is a critical lesion that is involved in DNA fragmentation in thymocyte apoptosis.
The effect of 60Co gamma radiation on DNA methylation was studied in four cultured cell lines. In all cases a dose-dependent decrease in 5-methylcytosine was observed at 24, 48, and 72 h postexposure to 0.5-10 Gy. Nuclear DNA methyltransferase activity decreased while cytoplasmic activity increased in irradiated (10 Gy) V79A03 cells as compared to controls. No DNA demethylase activity was detected in the nuclei of control or irradiated V79A03 cells. Additionally, gamma radiation resulted in the differentiation of C-1300 N1E-115 cells, a mouse neuroblastoma line, in a dose- and time-dependent manner. These results are consistent with the hypothesis that (1) genes may be turned on following radiation via a mechanism involving hypomethylation of cytosine and (2) radiation-induced hypomethylation results from decreased intranuclear levels of DNA methyltransferase.
Lipoic acid is a lipophilic antioxidant that participates in many enzymatic reactions and is used clinically to treat mushroom poisoning and metal toxicity. In this report the protective effect of lipoic acid (oxidized form) against radiation injury to hematopoietic tissues in mice was assessed by the endogenous and exogenous spleen colony assays and survival (LD50/30) assay. Intraperitoneal administration of lipoic acid at a nonlethal concentration of 200 mg/kg body wt, 30 min before irradiation increased the LD50/30 from 8.67 to 10.93 Gy in male CD2F1 mice. Following a 9-Gy irradiation, the yield of endogenous spleen colony-forming units in mice treated with saline and lipoic acid was 0.75 +/- 0.5 and 8.9 +/- 1.6, respectively. Using the exogenous spleen colony assay, lipoic acid treatment increased the D0 from 0.81 +/- 0.01 to 1.09 +/- 0.01 Gy, yielding a dose modification factor of 1.34 +/- 0.01. Dihydrolipoic acid (reduced form) has no radioprotective effect in CD2F1 mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.