A novel high-resolution (2-4 m source and receiver spacing) reflection and refraction seismic survey was carried out for aquifer characterization and to confirm the existing depositional model of the interlobate esker of Virttaankangas, which is part of the Säkylänharju-Virttaankangas glaciofluvial esker-chain complex in southwest Finland. The interlobate esker complex hosting the managed aquifer recharge (MAR) plant is the source of the entire water supply for the city of Turku and its surrounding municipalities. An accurate delineation of the aquifer is therefore critical for long-term MAR planning and sustainable use of the esker resources. Moreover, an additional target was to resolve the poorly known stratigraphy of the 70-100-m-thick glacial deposits overlying a zone of fractured bedrock. Bedrock surface as well as fracture zones were confirmed through combined reflection seismic and refraction tomography results and further validated against existing borehole information. The highresolution seismic data proved successful in accurately delineating the esker cores and revealing complex stratigraphy from fan lobes to kettle holes, providing valuable information for potential new pumping wells. This study illustrates the potential of geophysical methods for fast and cost-effective esker studies, in particular the digital-based landstreamer and its combination with geophone-based wireless recorders, where the cover sediments are reasonably thick.
Reflection seismic data were acquired within two field campaigns in the Blötberget, Ludvika mining area of central Sweden, for deep imaging of iron‐oxide mineralization that were known to extend down to 800–850 m depth. The two surveys conducted in years 2015 and 2016, one employing a seismic landstreamer and geophones connected to wireless recorders, and another one using cabled geophones and wireless recorders, aimed to delineate the geometry and depth extent of the iron‐oxide mineralization for when mining commences in the area. Even with minimal and conventional processing approaches, the merged datasets provide encouraging information about the depth continuation of the mineralized horizons and the geological setting of the study area. Multiple sets of strong reflections represent a possible continuation of the known deposits that extend approximately 300 m further down‐dip than the known 850 m depth obtained from historical drilling. They show excellent correlation in shape and strength with those of the Blötberget deposits. Furthermore, several reflections in the footwall of the known mineralization can potentially be additional resources underlying the known ones. The results from these seismic surveys are encouraging for mineral exploration purposes given the good quality of the final section and fast seismic surveys employing a simple cost‐effective and easily available impact‐type seismic source.
To be fully embraced into mineral exploration, seismic data require to be acquired fast, cheaper and with minimum environmental impacts addressing also the often brown-field highly noisy environment where these surveys are employed. Since 2013 and through a number of case studies, we have been testing a newly developed for urban environment, digital-based 240 m long, seismic landstreamer for mine planning and mineral exploration purposes. Here, we present a pilot study examining the potential of the streamer for deep targeting a known, down to approximately 850 m depth, iron-oxide mineralization in the Bergslagen mineral district of central Sweden. Combined streamer (100-3C-MEMS (micro-electromechanical system), 2–4 m spacing) and 75 wireless recorders (mixed 10 Hz and MEMS, 10 m spacing) were used. A Bobcat-mounted drophammer, 500 kg, was used to generate the seismic signal. Within 4 days, approximately 3.5 km of seismic data using 2–10 m source and receiver spacing were acquired. Reflection data processing results clearly image the mineralization as a set of strong high-amplitude reflections and likely slightly extending beyond the known 850 m depth. This is encouraging and suggests such a cost-effective exploration method can be used in the area and elsewhere to delineate similar depth range iron-oxide deposits.
Two 2D reflection seismic profiles were acquired in Blötberget, south-central Sweden, for deep targeting and delineation of sheet-like iron-oxide deposits, known to dip towards the southeast and extend down to at least 0.8 km depth from core drilling observations. The two perpendicular profiles recorded shots at every receiver station along the main and cross profiles. To obtain more information on the lateral extent of the mineralized horizons, data from the two profiles, including the cross-profile records, were binned together in a 3D grid and further processed as a 3D dataset. Processing results suggest more information is retrieved when 3D processing is used and the mineralization lateral extent can be inferred for at least 0.3 km. The seismic response of the mineralization was further studied through forward reflection traveltime modeling, using a 3D ray-tracing approach, and thus, the 3D geometry of several planar reflectors was validated. Additionally, 2D elastic finite-difference modeling work showed that the observed reflection pattern in the seismic data may originate from several mineralized horizons and suggesting potential resources in the footwall of the known deposits and large-scale geological structures. Results encourage the use of seismic methods for direct delineation of mineral deposits even from 2D profiles and prompted a 3D survey in the area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.