Oil palm monoculture comprises one of the most financially attractive land-use options in tropical forests, but cropland suitability overlaps the distribution of many highly threatened vertebrate species. We investigated how forest mammals respond to a landscape mosaic, including mature oil palm plantations and primary forest patches in Eastern Amazonia. Using both line-transect censuses (LTC) and camera-trapping (CT), we quantified the general patterns of mammal community structure and attempted to identify both species life-history traits and the environmental and spatial covariates that govern species intolerance to oil palm monoculture. Considering mammal species richness, abundance, and species composition, oil palm plantations were consistently depauperate compared to the adjacent primary forest, but responses differed between functional groups. The degree of forest habitat dependency was a leading trait, determining compositional dissimilarities across habitats. Considering both the LTC and CT data, distance from the forest-plantation interface had a significant effect on mammal assemblages within each habitat type. Approximately 87% of all species detected within oil palm were never farther than 1300 m from the forest edge. Our study clearly reinforces the notion that conventional oil palm plantations are extremely hostile to native tropical forest biodiversity, which does not bode well given prospects for oil palm expansion in both aging and new Amazonian deforestation frontiers.
In recent years, carbon dioxide emissions have been potentiated by several anthropogenic processes that culminate in climate change, which in turn directly threatens biodiversity and the resilience of natural ecosystems. Tropical rainforests are among the most impacted biological realms. The Belé m endemism center, which is one of the several endemism centers in Amazon, is located in the most affected area within the so-called "Deforestation Arc." Moreover, this region harbors a high concentration of Amazonian endangered bird species, of which 56% of them are considered to be under the threat of extinction. In this work, we sought to evaluate the current and future impacts of both climate change and deforestation on the distribution of endemic birds in the Belé m Area of Endemism (BEA). Thus, we generated species distribution models for the 16 endemic bird species considering the current and two future gas emission scenarios (optimistic and pessimistic). We also evaluated climate change impacts on these birds in three different dispersal contexts. Our results indicate that BAE, the endemic taxa will lose an average of 73% of suitable areas by 2050. At least six of these birds species will have less than 10% or no future suitable habitat in all emission scenarios. One of the main mechanisms used to mitigate the impacts of climate change on these species in the near future is to assess the current system of protected areas. It is necessary to ensure that these areas will continue being effective in conserving these species even under climate change. The "Gurupi Mosaic" and the "Rio-Capim" watershed are areas of great importance because they are considered climate refuges according to our study. Thus, conservation efforts should be directed to the maintenance and preservation of these two large remnants of vegetation in addition to creating ecological corridors between them.
Biological invasion is one of the main threats to native biodiversity. For a species to become invasive, it must be voluntarily or involuntarily introduced by humans into a nonnative habitat. Mammals were among first taxa to be introduced worldwide for game, meat, and labor, yet the number of species introduced in the Neotropics remains unknown. In this data set, we make available occurrence and abundance data on mammal species that (1) transposed a geographical barrier and (2) were voluntarily or involuntarily introduced by humans into the Neotropics. Our data set is composed of 73,738 historical and current georeferenced records on alien mammal species of which around 96% correspond to occurrence data on 77 species belonging to eight orders and 26 families. Data cover 26 continental countries in the Neotropics, ranging from Mexico and its frontier regions (southern Florida and coastal‐central Florida in the southeast United States) to Argentina, Paraguay, Chile, and Uruguay, and the 13 countries of Caribbean islands. Our data set also includes neotropical species (e.g., Callithrix sp., Myocastor coypus, Nasua nasua) considered alien in particular areas of Neotropics. The most numerous species in terms of records are from Bos sp. (n = 37,782), Sus scrofa (n = 6,730), and Canis familiaris (n = 10,084); 17 species were represented by only one record (e.g., Syncerus caffer, Cervus timorensis, Cervus unicolor, Canis latrans). Primates have the highest number of species in the data set (n = 20 species), partly because of uncertainties regarding taxonomic identification of the genera Callithrix, which includes the species Callithrix aurita, Callithrix flaviceps, Callithrix geoffroyi, Callithrix jacchus, Callithrix kuhlii, Callithrix penicillata, and their hybrids. This unique data set will be a valuable source of information on invasion risk assessments, biodiversity redistribution and conservation‐related research. There are no copyright restrictions. Please cite this data paper when using the data in publications. We also request that researchers and teachers inform us on how they are using the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.