Galactic winds are the primary mechanism by which energy and metals are recycled in galaxies and are deposited into the intergalactic medium. New observations are revealing the ubiquity of this process, particularly at high redshift. We describe the physics behind these winds, discuss the observational evidence for them in nearby star-forming and active galaxies and in the high-redshift universe, and consider the implications of energetic winds for the formation and evolution of galaxies and the intergalactic medium. To inspire future research, we conclude with a set of observational and theoretical challenges.Comment: Paper to be published in 2005 Annual Review of Astronomy & Astrophysics; revision based on comments from readers and production editor. Figure 1 was replaced to show the proper density scale. A PDF file combining both text and figures is available at http://www.astro.umd.edu/~veilleux/pubs/araa.pd
Citation for published item:fryntD tFtF nd ywersD wFF nd oothmD eFFqF nd groomD FwF nd hriverD FF nd hrinkwterD wFtF nd vorenteD xFFpF nd gorteseD vF nd ottD xF nd gollessD wF nd heferD eF nd ylorD iFxF nd uonstntopoulosD sFF nd ellenD tFF nd fldryD sF nd frnesD vF nd fuerD eFiF nd flndErwthornD tF nd floomD tFF nd frooksD eFwF nd froughD F nd geilD qF nd gouhD F nd grotonD hF nd hviesD F nd illisD F nd pogrtyD vFwFF nd posterD gF nd qlzerookD uF nd qoodwinD wF nd qreenD eF nd qunwrdhnD wFvF nd rmptonD iF nd roD sFEF nd ropkinsD eFwF nd uewleyD vF nd vwreneD tFF nd veonEvlD FqF nd veslieD F nd wilroyD F nd vewisD qF nd viskeD tF nd v¡ opezE¡ nhezD ¡ eFF nd whjnD F nd wedlingD eFwF nd wetlfeD xF nd weyerD wF nd wouldD tF nd yreshkowD hF nd y9ooleD F nd ryD wF nd ihrdsD FxF nd hnksD F nd hrpD F nd weetD FwF nd homsD eFhF nd oniniD gF nd lherD gFtF @PHISA 9he ews qlxy urvey X instrument spei(tion nd trget seletionF9D wonthly noties of the oyl estronomil oietyFD RRU @QAF ppF PVSUEPVUWF Further information on publisher's website: Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. ABSTRACTThe SAMI Galaxy Survey will observe 3400 galaxies with the Sydney-AAO Multi-object Integral-field spectrograph (SAMI) on the Anglo-Australian Telescope in a 3-yr survey which began in 2013. We present the throughput of the SAMI system, the science basis and specifications for the target selection, the survey observation plan and the combined properties of the selected galaxies. The survey includes four volume-limited galaxy samples based on cuts in a proxy for stellar mass, along with low-stellar-mass dwarf galaxies all selected from the Galaxy And Mass Assembly (GAMA) survey. The GAMA regions were selected because of the vast array of ancillary data available, including ultraviolet through to radio bands. These fields are on the celestial equator at 9, 12 and 14.5 h, and cover a total of 144 deg 2 (in GAMA-I). Higher density environments are also included with the addition of eight clusters. The clusters have spectroscopy from 2-degree Field Galaxy Redshift Survey (2dFGRS) and Sloan Digital Sky Survey (SDSS) and photometry in regions covered by the SDSS and/or VLT Survey Telescope/ATLAS. The aim is to cover a broad range in stellar mass and environment, and therefore the primary survey targets cover redshifts 0.004 < z < 0.095, magnitudes r pet < 19.4, stellar masses 10 7 -10 12 M , and environments from isolated field galaxies through groups to clusters of ∼10 15 M .
The remarkable similarity between emission spectra of narrow line regions (NLR) in Seyfert Galaxies has long presented a mystery. In photoionization models, this similarity implies that the ionization parameter is nearly always the same, about U ∼ 0.01. Here we present dusty, radiation-pressure dominated photoionization models that can provide natural physical insight into this problem. In these models, dust and the radiation pressure acting on it provide the controlling factor in moderating the density, excitation and surface brightness of photoionized NLR structures. Additionally, photoelectric heating by the dust is important in determining the temperature structure of the models. These models can also explain the coexistence of the low-, intermediate-and coronal ionization zones within a single self-consistent physical structure. The radiation pressure acting on dust may also be capable of driving the fast (∼ 3000 km s −1 ) outflows such as are seen in the HST observations of NGC 1068.
HST WFPC2 images are presented that span the inner ∼19 kpc diameter of the edge-on galaxy NGC 3079; they are combined with optical, emission-line imaging spectrophotometry and VLA images of radio polarization vectors and rotation measures. Ionized gas filaments within 9-kpc diameter project up to 3 kpc above the disk, with the brightest forming the ≈ 1 kpc diameter superbubble. They are often resolved into strands ≈ 0. ′′ 3 (25 pc) wide, which emerge from the nuclear CO ring as five distinct streams with large velocities and velocity dispersions (FWHM ≈450 km s −1 ). The brightest stream emits ≈ 10% of the superbubble Hα flux and extends for 250 pc along the axis of the VLBI radio jet to one corner of the base of the superbubble. The other four streams are not connected to the jet, instead curving up to the vertical ≈ 0.6 kpc above the galaxy disk, then dispersing as a spray of droplets each with ≈ 10 3 √ f M of ionized gas (the volume filling factor f > 3 × 10 −3 ). Shredded clumps of disk gas form a similar structure in hydrodynamical models of a galaxy-scale wind. The pattern of magnetic fields and the gaseous kinematics also suggest that a wind of mechanical luminosity L w ≈ 10 43 ergs s −1 has stagnated in the galaxy disk at a radius of ∼ 800 pc, has flared to larger radii with increasing height as the balancing ISM pressure reduces above the disk, and has entrained dense clouds into a "mushroom vortex" above the disk. Hα emissivity of the filaments limits densities to n e > 4.3 f −1/2 cm −3 , hence kinetic energy and momentum to (0.4 − 5) × 10 55 √ f ergs and (1.6 − 6) × 10 47 √ f dyne s, respectively; the ranges result from uncertain space velocities. A prominent star-forming complex elsewhere in the galaxy shows a striking spray of linear filaments that extend for hundreds of parsecs to end in unresolved "bullets."
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.