In an effort to identify de novo genetic variants that contribute to the overall risk of autism, the Simons Foundation Autism Research Initiative (SFARI) has gathered a unique sample called the Simons Simplex Collection (SSC). More than 2000 families have been evaluated to date. On average, probands in the current sample exhibit moderate to severe autistic symptoms with relatively little intellectual disability. An interactive database has been created to facilitate correlations between clinical, genetic, and neurobiological data.
Both theoretical and experimental work have suggested that central neurons compensate for changes in excitatory synaptic input in order to maintain a relatively constant output. We report here that inhibition of excitatory synaptic transmission in cultured spinal neurons leads to an increase in mEPSC amplitudes, accompanied by an equivalent increase in the accumulation of AMPA receptors at synapses. Conversely, increasing excitatory synaptic activity leads to a decrease in synaptic AMPA receptors and a decline in mEPSC amplitude. The time course of this synaptic remodeling is slow, similar to the metabolic half-life of neuronal AMPA receptors. Moreover, inhibiting excitatory synaptic transmission significantly prolongs the half-life of the AMPA receptor subunit GluR1, suggesting that synaptic activity modulates the size of the mEPSC by regulating the turnover of postsynaptic AMPA receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.