A double-blind, crossover, 8-wk study was conducted to compare effects of the tocotrienol-enriched fraction of palm oil (200 mg palmvitee capsules/day) with those of 300 mg corn oil/d on serum lipids of hypercholesterolemic human subjects (serum cholesterol 6.21-8.02 mmol/L). Concentrations of serum total cholesterol (-15%), LDL cholesterol (-8%), Apo B (-10%), thromboxane (-25%), platelet factor 4 (-16%), and glucose (-12%) decreased significantly only in the 15 subjects given palmvitee during the initial 4 wk. The crossover confirmed these actions of palmvitee. There was a carry over effect of palmvitee. Serum cholesterol concentrations of seven hypercholesterolemic subjects (greater than 7.84 mmol/L) decreased 31% during a 4-wk period in which they were given 200 mg gamma-tocotrienol/d. This indicates that gamma-tocotrienol may be the most potent cholesterol inhibitor in palmvitee capsules. The results of this pilot study are very encouraging.
The pathogenic bacterium Pseudomonas aeruginosa causes serious infections in immunocompromised patients. N-(3-Oxododecanoyl)-L-homoserine lactone (3OC12-HSL) is a key component of P. aeruginosa's quorum-sensing system and regulates the expression of many virulence factors. 3OC12-HSL was previously shown to be hydrolytically inactivated by the paraoxonase (PON) family of calcium-dependent esterases, consisting of PON1, PON2, and PON3. Here we determined the specific activities of purified human PONs for 3OC12-HSL hydrolysis, including the common PON1 polymorphic forms, and found they were in the following order: PON2 Ͼ Ͼ PON1 192R > PON1 192Q > PON3. PON2 exhibited a high specific activity of 7.6 ؎ 0.4 mols/min/mg at 10 M 3OC12-HSL, making it the best PON2 substrate identified to date. By use of class-specific inhibitors, approximately 85 and 95% of the 3OC12-HSL lactonase activity were attributable to PON1 in mouse and human sera, respectively. In mouse liver homogenates, the activity was metal dependent, with magnesium-and manganese-dependent lactonase activities comprising 10 to 15% of the calcium-dependent activity. In mouse lung homogenates, all of the activity was calcium dependent. The calcium-dependent activities were irreversibly inhibited by extended EDTA treatment, implicating PONs as the major enzymes inactivating 3OC12-HSL. In human HepG2 and EA.hy 926 cell lysates, the 3OC12-HSL lactonase activity closely paralleled the PON2 protein levels after PON2 knockdown by small interfering RNA treatment of the cells. These findings suggest that PONs, particularly PON2, could be an important mechanism by which 3OC12-HSL is inactivated in mammals.Pseudomonas aeruginosa is an opportunistic bacterium which causes serious infections in immunocompromised and cystic fibrosis patients (10). As with many gram-negative bacteria, P. aeruginosa produces acyl-homoserine lactone (AHL) quorumsensing (QS) signaling molecules termed autoinducers which allow the single-celled organisms to coordinate their actions (36). N-(3-Oxododecanoyl)-L-homoserine lactone (3OC12-HSL) is a key autoinducer synthesized by P. aeruginosa which regulates the expression of extracellular virulence factors and biofilm formation (5, 36). Rats and mice experimentally infected with P. aeruginosa mutants deficient in the ability to produce or respond to 3OC12-HSL exhibited significantly diminished lung pathology, bacterial dissemination, and morbidity and accelerated bacterial clearance compared to animals infected with wild-type bacteria, demonstrating the importance of 3OC12-HSL for P. aeruginosa pathogenicity (14,21,27,31,40). 3OC12-HSL also has an array of immunomodulatory effects on eukaryotic cells, including the induction of apoptosis, inhibition of leukocyte proliferation, activation of neutrophils and macrophages, and induction of proinflammatory mediators (7,15,34,37,39,43). Recently, it was shown that a number of mammalian cell lines were able to inactive 3OC12-HSL (5), providing a possible mechanism for reduction of bacterial virulence.Mam...
Two virulence factors produced by Pseudomonas aeruginosa are pyocyanin and N-(3-oxododecanoyl)-L-homoserine lactone (3OC12). Pyocyanin damages host cells by generating ROS (reactive oxygen species). 3OC12 is a quorum-sensing signalling molecule which regulates bacterial gene expression and modulates host immune responses. PON2 (paraoxonase-2) is an esterase that inactivates 3OC12 and potentially attenuates Ps. aeruginosa virulence. Because increased intracellular Ca2+ initiates the degradation of PON2 mRNA and protein and 3OC12 causes increases in cytosolic Ca2+, we hypothesized that 3OC12 would also down-regulate PON2. 3OC12 and the Ca2+ ionophore A23187 caused a rapid cytosolic Ca2+ influx and down-regulated PON2 mRNA, protein and hydrolytic activity in A549 and EA.hy 926 cells. The decrease in PON2 hydrolytic activity was much more extensive and rapid than decreases in protein, suggesting a rapid post-translational mechanism which blocks PON2's hydrolytic activity. The Ca2+ chelator BAPTA/AM [1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester)] diminished the ability of 3OC12 to decrease PON2, demonstrating that the effects are mediated by Ca2+. PON2 also has antioxidative properties and we show that it protects cells from pyocyanin-induced oxidative stress. Knockdown of PON2 by transfecting cells with siRNA (small interfering RNA) rendered them more sensitive to, whereas overexpression of PON2 protected cells from, pyocyanin-induced ROS formation. Additionally, 3OC12 potentiated pyocyanin-induced ROS formation, presumably by inactivating PON2. These findings support a key role for PON2 in the defence against Ps. aeruginosa virulence, but also reveal a mechanism by which the bacterium may subvert the protection afforded by PON2.
In vivo brain microdialysis was used to determine the effects of the standard tricyclic antidepressant imipramine and the two selective serotonin reuptake inhibitors (SSRIs) antidepressants, fluoxetine and fluvoxamine, on extracellular levels of norepinephrine (NE), dopamine (DA), and serotonin (5-HT) in rat medial prefrontal cortex. When given intraperitoneally (IP), imipramine increased NE in the microdialysis perfusate, and elevated DA and 5-HT to a lesser extent. Similar dose-dependent increases in DA and 5-HT were detected after IP fluoxetine, although NE was less affected. In contrast, IP fluvoxamine produced no change in basal NE nor DA, although a large increase in 5-HT occurred at an intermediate dose. When administered directly into cortex, all three antidepressants increased 5-HT by the same amount in a dose-dependent fashion. Intracortical imipramine and fluoxetine increased NE, and fluoxetine and fluvoxamine both increased DA, with fluoxetine doing so at a lower concentration. These data suggest that the SSRIs are not entirely selective for serotonin in vivo.
An acute limbic-cerebellar syndrome was seen in six industrial workers who inhaled trimethyltin (TMT). Clinical features included hearing loss, disorientation, confabulation, amnesia, aggressiveness, hyperphagia, disturbed sexual behavior, complex partial and tonic-clonic seizures, nystagmus, ataxia, and mild sensory neuropathy. Severity paralleled maximal urinary organotin levels. One patient died and two remained seriously disabled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.