The paper introduces a deep learning-based Twitter hate-speech text classification system. The classifier assigns each tweet to one of four predefined categories: racism, sexism, both (racism and sex-ism) and non-hate-speech. Four Con-volutional Neural Network models were trained on resp. character 4-grams, word vectors based on semantic information built using word2vec, randomly generated word vectors, and word vectors combined with character n-grams. The feature set was down-sized in the networks by max-pooling, and a softmax function used to classify tweets. Tested by 10-fold cross-validation, the model based on word2vec embeddings performed best, with higher precision than recall, and a 78.3% F-score.
This study addressed the effects of a naturally occurring stressor on components of the immune response. Blood was drawn twice from 75 first-year medical students, with a baseline sample taken one month before their final examinations and a stress sample drawn on the first day of final examinations. Median splits on scores from the Holmes--Rahe Social Readjustment Rating Scale and the UCLA Loneliness Scale produced a 2 X 2 X 2 repeated measures ANOVA when combined with the trials variable. Natural killer (NK) cell activity declined significantly from the first to the second sample. High scorers on stressful life events and loneliness had significantly lower levels of NK activity. Total plasma IgA increased significantly from the first to second sample, while plasma IgG and IgM, C-reactive protein, and salivary IgA did not change significantly.
While many data sets contain multiple relationships, depicting more than one data relationship within a single visualization is challenging. We introduce Bubble Sets as a visualization technique for data that has both a primary data relation with a semantically significant spatial organization and a significant set membership relation in which members of the same set are not necessarily adjacent in the primary layout. In order to maintain the spatial rights of the primary data relation, we avoid layout adjustment techniques that improve set cluster continuity and density. Instead, we use a continuous, possibly concave, isocontour to delineate set membership, without disrupting the primary layout. Optimizations minimize cluster overlap and provide for calculation of the isocontours at interactive speeds. Case studies show how this technique can be used to indicate multiple sets on a variety of common visualizations.
Convolutional Neural Networks (CNN) have showed success in achieving translation invariance for many image processing tasks. The success is largely attributed to the use of local filtering and maxpooling in the CNN architecture. In this paper, we propose to apply CNN to speech recognition within the framework of hybrid NN-HMM model. We propose to use local filtering and max-pooling in frequency domain to normalize speaker variance to achieve higher multi-speaker speech recognition performance. In our method, a pair of local filtering layer and max-pooling layer is added at the lowest end of neural network (NN) to normalize spectral variations of speech signals. In our experiments, the proposed CNN architecture is evaluated in a speaker independent speech recognition task using the standard TIMIT data sets. Experimental results show that the proposed CNN method can achieve over 10% relative error reduction in the core TIMIT test sets when comparing with a regular NN using the same number of hidden layers and weights. Our results also show that the best result of the proposed CNN model is better than previously published results on the same TIMIT test sets that use a pre-trained deep NN model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.