This paper establishes the impact of topological and graphical properties on the comprehension of Euler diagrams. To-date, various studies have examined the impact of individual properties of Euler diagrams, such as curve shape and orientation. This has allowed us to establish guides for using these properties such as 'draw Euler diagrams with circles' and 'draw Euler diagrams without regard to orientation'. However, until the work described here, questions still remain, for example 'do these guides, when combined, make a significant difference to real-world Euler diagrams?', and if so, 'should they be used by those visualizing set data with Euler diagrams?' To answer these questions an empirical study was conducted to compare Euler diagrams that have been drawn by others for their real-world data, against versions that adhere to all of the guides in combination. The study establishes that both the accuracy and the speed with which information is derived from Euler diagrams is significantly improved when Euler diagrams adhere, where possible, to all the guides. The improvement is considerable when using the guided diagrams, with on average, the error rate being more than halved from 21.4% to 10.3%, and a 9 second improvement in the average time taken, from 34.2 seconds to 24.9 seconds. As Euler diagrams are regularly used to visualize information in a multitude of areas, ranging from crime control to social network analysis, our results indicate that applying the guides to these diagrams will improve the ability of users to accurately and quickly extract information.