We take a new, scenario-based look at evaluation in information visualization. Our seven scenarios, evaluating visual data analysis and reasoning, evaluating user performance, evaluating user experience, evaluating environments and work practices, evaluating communication through visualization, evaluating visualization algorithms, and evaluating collaborative data analysis were derived through an extensive literature review of over 800 visualization publications. These scenarios distinguish different study goals and types of research questions and are illustrated through example studies. Through this broad survey and the distillation of these scenarios, we make two contributions. One, we encapsulate the current practices in the information visualization research community and, two, we provide a different approach to reaching decisions about what might be the most effective evaluation of a given information visualization. Scenarios can be used to choose appropriate research questions and goals and the provided examples can be consulted for guidance on how to design one's own study.
Designing collaborative interfaces for tabletops remains difficult because we do not fully understand how groups coordinate their actions when working collaboratively over tables. We present two observational studies of pairs completing independent and shared tasks that investigate collaborative coupling, or the manner in which collaborators are involved and occupied with each other's work. Our results indicate that individuals frequently and fluidly engage and disengage with group activity through several distinct, recognizable states with unique characteristics. We describe these states and explore the consequences of these states for tabletop interface design.
International audienceWe present the generalized space-time cube, a descriptive model for visualizations of temporal data. Visualizations are described as operations on the cube, which transform the cube's 3D shape into readable 2D visualizations. Operations include extracting subparts of the cube, flattening it across space or time or transforming the cubes geometry and content. We introduce a taxonomy of elementary space-time cube operations and explain how these operations can be combined and parameterized. The generalized space-time cube has two properties: (1) it is purely conceptual without the need to be implemented, and (2) it applies to all datasets that can be represented in two dimensions plus time (e.g. geo-spatial, videos, networks, multivariate data). The proper choice of space-time cube operations depends on many factors, for example, density or sparsity of a cube. Hence, we propose a characterization of structures within space-time cubes, which allows us to discuss strengths and limitations of operations. We finally review interactive systems that support multiple operations, allowing a user to customize his view on the data. With this framework, we hope to facilitate the description, criticism and comparison of temporal data visualizations, as well as encourage the exploration of new techniques and systems. This paper is an extension of Bach et al.'s (2014) work
While many data sets contain multiple relationships, depicting more than one data relationship within a single visualization is challenging. We introduce Bubble Sets as a visualization technique for data that has both a primary data relation with a semantically significant spatial organization and a significant set membership relation in which members of the same set are not necessarily adjacent in the primary layout. In order to maintain the spatial rights of the primary data relation, we avoid layout adjustment techniques that improve set cluster continuity and density. Instead, we use a continuous, possibly concave, isocontour to delineate set membership, without disrupting the primary layout. Optimizations minimize cluster overlap and provide for calculation of the isocontours at interactive speeds. Case studies show how this technique can be used to indicate multiple sets on a variety of common visualizations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.