IWe prove that any binary relation with underlying set (base) E with cardinality n > 6 is reconstructible from its restrictions of cardinality 2. 3,4 and ( n -1). In part I we characterize relations R and R' on the same base E such that R / X and R'/X arc isomorphic for every subset X of E with cardinality 2, 3,4. In part I1 we shall prove that R and R' arc isomorphic as soon as n > 6 when R/X and R/X' arc isomorphic for every subset X of E with cardinality 2. 3, 4 and ( n -1). MSC: 04A05
Let V be a set of cardinality v (possibly infinite). Two graphs G and G with vertex set V are isomorphic up to complementation if G is isomorphic to G or to the complement G of G. Let k be a nonnegative integer, G and G are k-hypomorphic up to complementation if for every k-element subset K of V , the induced subgraphs G K and G K are isomorphic up to complementation. A graph G is kreconstructible up to complementation if every graph G which is k-hypomorphic to G up to complementation is in fact isomorphic to G up to complementation. We give a partial characterisation of the set S of ordered pairs (n, k) such that two graphs G and G on the same set of n vertices are equal up to complementation whenever they are k-hypomorphic up to complementation. We prove in particular that S contains all ordered pairs (n, k) such that 4 k n − 4. We also prove that 4 is the least integer k such that every graph G having a large number n of vertices is k-reconstructible up to complementation; this answers a question raised by P. Ille [P. Ille, Personal communication, September 2000].
This paper deals with pairs of binary relations defined on the same finite basis and which the %element restrictions are isomorphic and those of 5-element restrictions are isomorphic or anti-isomorphic. To each of these pairs, we associate an equivalence relation which yields a decomposition of these relations into classes that we will characterize. As application, we get the treshold of half-reconstruction for tournaments. MathematicsSubject Classification: 03C60, 04A05, 06A05. Le diamant positif, not6 6+, est un tournoi de base { a , b,c, d } , prenant l a valeur + sur les seuls couples (a, b), ( b , c ) , (c, a), et (z, d ) avec z = a , b, c; le diamant nigatif, not6 6-, est le converse de 6+ (voir Figure 1). Les tournois 6+ and 6sont anti-isomorphes et non isomorphes. Rappelons que les tournois qui ne contiennent pas ces deux diamants, ont ktC caractdrisds en [3] et [7]. ~ ')Nous adressons nos vifs remerciements B JEAN GUILLAUME HAGENDORF, pour ses remarques et de R sont dites des conditions d'hypomorphie. J . G. HAGENDORF a introduit le probltme de la demi-reconstruction en affaiblissant l'hypothtse sur les restrictions: celles-ci ne sont connues qu'b un isomorphisme ou anti-isomorphisme prks. Ces dernitres conditions sont dites des conditions d 'he'mimorphie.Deux relations binaires R et R' de base commune E de cardinal n sont dites khypomorphes (resp. k-he'mimorphes) lorsque pour toute partie X de E de cardinal k, les restrictions R I X et R' I X sont isomorphes (resp. isomorphes ou anti-isomorphes). Dkfinition analogue lorsque card(X) 5 k, on remplace alors le prCfixe "lc-" par "5 k-" d a m les notations. 1.3 Rappelons les deux rksultats suivants: T h k o r b m e d e r e c o n s t r u c t i o n (G. LOPEZ [S]). Si R et R' sont deux relaiions ( 5 6)-hypomorphes, alors R et R' sont isomorphes. T h k o r t m e d e d e m i -r e c o n s t r u c t i o n (J. G. HAGENDORF et G. LOPEZ [4]). Si R et R' son2 deux relations ( 5 12)-he'mimorphes, alors R et R' son2 isomorphes ou anti-isomorphes.La preuve du thkor6me de demi-reconstruction, consiste en fait B montrer que: La ( 5 12)-he'rnimorphie entre deux relations R et R' entraine la ( 5 6)-hypomor-C'est ce rksultat qui a motive notre ktude du lien entre hypomorphie et hkmimorphie.Rappelons kgalement que la ( 5 4)-hypomorphie entre deux relations permet de connaitre la morphologie de la paire de ces deux relations (G. LOPEZ et C. PAUZY [7]).1.4 Nous nous p1ac;ons ici dans l'hypothtse de la ( 5 3)-hypomorphie et la ( 5 5)hkmimorphie. Ces conditions sont independantes, leur conjonction n'entraine pas la ( 5 4)-hypomorphie mais dkcoule de celle-ci (voir 3.). Nous Gtablissons le thkorcme suivant :
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.