The effects of fish stock reduction (biomanipulation) was studied in an 85 ha shallow peaty turbid lake. The lake cleared in a 4-week period in April-May 2004, which demonstrated that biomanipulation can be effective in peaty lakes. We demonstrated that it is possible to reduce the fish stock to <25 kg ha -1 benthivorous fish and <15 kg ha -1 planktivorous fish, sufficiently low to switch the lake from a turbid to a clear state. Knowledge of lake morphology, fish stock, fish behaviour, and a variety of fishing methods was necessary to achieve this goal. It is expected that continuation of fisheries to remove young of the year planktivorous species is needed for several years, until macrophytes provide sufficient cover for zooplankton and can compete with phytoplankton. Cladocerans developed strongly after fish removal. The clearing of the lake coincided with a sudden decrease of filamentous cyanobacteria and suspended detritus, and a strong increase of Bosmina. We assume that Bosmina was able to reduce filamentous prokaryotes and detritus. After the disappearance of the cyanobacteria, Bosmina disappeared too. After the clearing of the lake Daphnia dominated in zooplankton and apparently was able to keep phytoplankton levels low. In our case, wind resuspension did not prevent biomanipulation from being successful. No correlation between windspeed and turbidity was found, neither in an 85 ha nor in a 230 ha shallow peaty lake. Regression analysis showed that on average 50% of the amount of suspended detritus can be explained by resuspension by fish and 50% by phytoplankton decomposition. The main goal of this biomanipulation experiment, clear water and increased submerged plant cover in a shallow peaty lake, was reached.
<p>Globally, surface water quality and ecosystem functioning are challenged by anthropogenic P inputs. While sterner legislation has led to lower external P loading, internal loading fed by legacy P accumulated in the sediment has become the controlling factor of surface water P concentrations in many European freshwater systems. Fe amendment is a treatment method to control internal P loading, but is not always successful on the long term. In Lake Terra Nova, a polymictic shallow peat lake in the Netherlands, treatment with FeCl<sub>3</sub> only led to a temporary decrease in sedimentary P release. Two years after treatment seasonal peaks in surface water P concentrations started to appear and have been increasing in intensity for the past 8 years. Depth-resolved solid phase analysis by sequential Fe and P extractions was combined with bulk X-ray absorption spectroscopy (XAS) at the Fe K-edge and high-resolution micro-X-ray fluorescence spectrometry (&#181;-XRF) and &#181;-XAS. At spots with distinctively high Fe contents, pyrite and silicate-bound Fe are identified by microscopic and spectroscopic analyses. The spectroscopic data, however, also point to a finely dispersed Fe species in the sediment matrix which most likely corresponds to Fe complexed by OM in the surface sediment. The correlation of the distribution of P and Fe suggests that P is bound to these Fe-OM complexes. This interpretation is supported by the sequential extraction results which showed that the Fe treatment induced a shift in the dominant P pool from Ca-bound P to Fe- and OM-bound P. Overall, the results indicate that FeCl<sub>3</sub> application caused a change in sediment P dynamics towards a highly redox sensitive system in which P bound to Fe-OM is released to the surface water during seasonally low bottom water oxygen concentrations. The results of this study therefore indicate that FeCl<sub>3</sub> may not be the ideal additive for the remediation of internal P loading in peaty water bodies due to the high affinity of Fe to OM.</p>
<p>The decline of surface water quality due to excess phosphorus (P) input is a global problem of increasing urgency. Finding sustainable measures to restore the surface water quality of eutrophic lakes with respect to P, other than by decreasing P inputs, remains a challenge. The addition of iron (Fe) salts has been shown to be effective in removing dissolved phosphate from the water column of eutrophic lakes. However, the resulting changes in biogeochemical processes in sediments as well as the long-term effects of Fe additions on P dynamics in both sediments and the water column are not well understood.</p><p>In this study, we assess the impact of past Fe additions on the sediment P biogeochemistry of Lake Terra Nova, a well-mixed shallow peat lake in the Netherlands. The Fe-treatment in 2010 efficiently reduced P release from the sediments to the surface waters for 6 years. Since then, the internal sediment P source in the lake has been increasing again with a growing trend over the years.</p><p>In 2020, we sampled sediments at three locations in Terra Nova, of which one received two times more Fe during treatment than the other two. Sediment cores from all sites were sectioned under oxygen-free conditions. Both the porewaters and sediments were analysed for their chemical composition, with sequential extractions providing insight into the sediment forms of P and Fe. Additional sediment cores were incubated under oxic and anoxic conditions and the respective fluxes of P and Fe across the sediment water interface were measured.</p><p>The results suggest that Fe and P dynamics in the lake sediments are strongly coupled. We also find that the P dynamics are sensitive to the amount of Fe supplied, even though enhanced burial of P in the sediment was not detected. The results of the sequential extraction procedure for P, which distinguishes P associated with humic acids and Fe oxides, as well as reduced flux of Fe(II) across the sediment water interface in the anoxic incubations, suggest a major role of organic matter in the interaction of Fe and P in these sediments.</p><p>Further research will include investigations of the role of organic matter and sulphur in determining the success of Fe-treatment in sequestering P in lake sediments. Based on these data in combination with reactive transport modelling we aim to constrain conditions for successful lake restoration through Fe addition.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.