<p style='text-indent:20px;'>We are interested in the numerical solution of coupled semilinear partial differential equations (PDEs) in two and three dimensions. Under certain assumptions on the domain, we take advantage of the Kronecker structure arising in standard space discretizations of the differential operators and illustrate how the resulting system of ordinary differential equations (ODEs) can be treated directly in matrix or tensor form. Moreover, in the framework of the proper orthogonal decomposition (POD) and the discrete empirical interpolation method (DEIM) we derive a two- and three-sided model order reduction strategy that is applied directly to the ODE system in matrix and tensor form respectively. We discuss how to integrate the reduced order model and, in particular, how to solve the tensor-valued linear system arising at each timestep of a semi-implicit time discretization scheme. We illustrate the efficiency of the proposed method through a comparison to existing techniques on classical benchmark problems such as the two- and three-dimensional Burgers equation.</p>
We consider the numerical solution of large-scale symmetric differential matrix Riccati equations. Under certain hypotheses on the data, reduced order methods have recently arisen as a promising class of solution strategies, by forming low-rank approximations to the sought after solution at selected timesteps. We show that great computational and memory savings are obtained by a reduction process onto rational Krylov subspaces, as opposed to current approaches. By specifically addressing the solution of the reduced differential equation and reliable stopping criteria, we are able to obtain accurate final approximations at low memory and computational requirements. This is obtained by employing a two-phase strategy that separately enhances the accuracy of the algebraic approximation and the time integration. The new method allows us to numerically solve much larger problems than in the current literature. Numerical experiments on benchmark problems illustrate the effectiveness of the procedure with respect to existing solvers.
Data has been collected by residents in a neighbourhood of Durban concerning noxious odours and health issues. This report examines how this data might be used to identify possible sources of the reported smells and their level of emission. The approach is to exploit a well-known simple mathematical model of dispersion of chemicals and use this to look at the inverse problem of identifying possible sources. Two of the complicating issues are that, unlike most previous work, i) the recorded data is subjective, indicating only that a smell was detected with no indication of concentration, and ii) there are large amounts of missing data, both due to no reporting of low concentrations and not always reporting high levels. This makes the inverse problem slightly non-standard.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.