The metameric organization of the Drosophila melanogaster tail is obscured by developmental events that partially suppress or fuse some of its regions. To better define the developmental origins and segmental identities in the tail of the Drosophila embryo, we documented expression patterns and mutant phenotypes of several genes that play important roles in its morphogenesis. We documented the domains of engrailed (en), Abdominal-B (Abd-B) and caudal (cad) expression in the tail region. The staining pattern of cut (ct) was used to correlate the embryonic sense organs with their respective positions on the larval cuticle. The en patterns in different Bithorax-Complex (BX-C) Abd-B morphogenetic (m) and regulatory (r) mutants demonstrated that Abd-B functions to, among other things, suppress embryonic ventral epidermal structures on the posterior side of A8 to A9. Ventral epidermal structures were not added back into the en pattern in r- or BX-C- mutants, indicating that although the BX-C functions extend through A10, other non-BX-C genes must be required for development of this segment.
Whereas the segmental organization of the thorax and anterior abdomen is morphologically delineated in both the Drosophila larva and adult, segments in the head and caudal regions lack such well-defined boundaries. Consequently, the organization of these regions has been difficult to decipher. In this study, transformations caused by the bithorax-complex homeotic mutants 48, M3, Ultraabdominal-1 (Uab1) and tumorous-head-3 (tuh-3), as well as the patterns of engrailed gene expression have been analyzed to investigate the segmental organization of the caudal segments. A special emphasis was placed on sense organs appearing in abdominal segments 8, 9 and 10 (A8-A10): We find that: (1) transformations in the caudal segments obey parasegmental borders; (2) the sense organs on A8, A9, and A10 are probably homologous to the pits and hairs in anterior A1-A7; (3) except for the larval anal tuft and the anterior side of A8, all structures in larval segments A8, A9 and A10 are dorsal/lateral in origin; and (4) dorsalization of embryonic A8 and A9 cells leaves space ventrally for A10, as it follows the contracting ventral nervous system during the embryological process of germ band contraction.
The tuh-1 maternal effect locus contains two naturally occurring isoalleles, tuh-1h and tuh-1g. Until recently there has been no possibility to distinguish between the tuh-1h and the tuh-1g maternal effects other than evaluating their effect on the Bithorax-Complex (BX-C) Abdominal B (Abd-B) mutant tuh-3. However, in this report we identify a bristle phenotype associated with the tuh-1 locus that has very interesting evolutionary implications. Females homozygous for tuh-1h always produce adult offspring with more bristles than females homozygous or heterozygous for tuh-1g. The effect is global. Increased bristle number occurs in the head, the thorax, and the anterior and posterior abdomen. Females totally deficient for the tuh-1 gene produce offspring with high bristle number. Thus, the bristle phenotype results from the absence of the maternally contributed tuh-1g factor. Genetic evidence shows that the bristle phenotype is caused by the tuh-1 locus and that tuh-1h is completely recessive to tuh-1g. The tuh-1 locus is located at the euchromatin-β-heterochromatin junction near the centromere of the X chromosome and deficiency analysis places the locus between the lethal genes extra organs (eo) and lethal B20 (lB20). The variance in bristle number attributable to the tuh-1 locus in nature is approximately 10.1%, an indication that the bristle phenotype is most likely a neutral, pleiotrophic side effect of tuh-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.