Olfactory neurons (ON) which are located in the olfactory epithelium are responsible of odorous molecule detection. A unique feature of these cells is their continuous replacement throughout life due to the proliferation and differentiation of local neural precursors, the basal cells. Thus, experimental destruction of all ON induces a stimulation of basal cell division followed by tissue regeneration. The fact that ON precursors display such proliferative and neurogenic activity in adults makes these cells particularly attractive as a potential tool for nervous system repair. However, basal cell proliferation and, thus, ON production, decrease in relation to age; mostly during the first months of life. Therefore, we aimed to seek whether the ability of ON precursors to yield new functional ON in regenerative conditions was consequently impaired in adult. ZnSO4 intranasal perfusion administered to young (1 month) and adult (6 months) mice leads in a few days to total ON destruction and to hyposmia. Tissue and function restoration occurred in the following weeks in both mice groups and was preceded by a transient peak of cell division. In adults, although neurogenesis in the impaired olfactory epithelium was less efficient than in young mice, neural precursors retain their ability to provide new functional ON as indicated by the butanol detection recovery. This was achieved more rapidly than total ON regeneration, suggesting that a reduced number of reconnected ON may be sufficient for odor discrimination.
The inhalation of certain metals can result in olfactory epithelial injury, an altered sense of smell, and direct delivery of the metal from the olfactory epithelium to the olfactory bulbs and other parts of the central nervous system. The purpose of this study was to examine whether mice given an intranasal instillation of cadmium would develop altered olfactory function and to assess whether cadmium may be transported directly from the olfactory epithelium to the central nervous system. To evaluate cadmium's ability to induce anosmia and on the basis of olfactory epithelium sensitivity to metals, the aim of this study was first to study cadmium effects on the olfactory function and secondly to check whether cadmium may be transported from the nasal area to the central nervous system. After an intranasal instillation of a solution containing CdCl 2 at 136 mM, we observed in treated mice: (1) a partial destruction of the olfactory epithelium, which is reduced to three or four basal cell layers followed by a progressive regeneration; (2) a loss of odor discrimination with a subsequent recovery; and (3) a cadmium uptake by olfactory bulbs demonstrated using atomic absorption spectrophotometry, but not by other parts of the central nervous system. Cadmium was delivered to the olfactory bulbs, most likely along the olfactory nerve, thereby bypassing the intact blood-brain barrier. We consider that cadmium can penetrate olfactory epithelium and hence be transported to olfactory bulbs. The olfactory route could therefore be a likely way to reach the brain and should be taken into account for occupational risk assessments for this metal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.