In this paper we introduce a novel algorithm for automatic fault detection in textures. We study the problem of finding a defect in regularly textured images with an approach based on a template matching principle.We aim at registering patches of an input image in a defect-free reference sample according to some admissible transformations. This approach becomes feasible by introducing the so-called discrepancy norm as fitness function which shows particular behavior like a monotonicity and a Lipschitz property. The proposed approach relies only on few parameters which makes it an easily adaptable algorithm for industrial applications and, above all, it avoids complex tuning of configuration parameters.Experiments demonstrate the feasibility and the reliability of the proposed algorithms with textures from real-world applications in the context of quality inspection of woven textiles.
Commodity RGB-D sensors capture color images along with dense pixel-wise depth information in real-time. Typical RGB-D sensors are provided with a factory calibration and exhibit erratic depth readings due to coarse calibration values, ageing and thermal influence effects. This limits their applicability in computer vision and robotics. We propose a novel method to accurately calibrate depth considering spatial and thermal influences jointly. Our work is based on Gaussian Process Regression in a four dimensional Cartesian and thermal domain. We propose to leverage modern GPUs for dense depth map correction in real-time. For reproducibility we make our dataset and source code publicly available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.