The myxozoan parasite Ceratomyxa shasta is a significant pathogen of juvenile salmonids in the Pacific Northwest of North America and is limiting recovery of Chinook (Oncorhynchus tshawytscha) and coho (O. kisutch) salmon populations in the Klamath River. We conducted a 5-year monitoring program that comprised concurrent sentinel fish exposures and water sampling across 212 river kilometers of the Klamath River. We used percent mortality and degree-days to death to measure disease severity in fish. We analyzed water samples using quantitative PCR and Sanger sequencing, to determine total parasite density and relative abundance of C. shasta genotypes, which differ in their pathogenicity to salmonids. We detected the parasite throughout the study zone, but parasite density and genetic composition fluctuated spatially and temporally. Chinook and coho mortality increased with density of their specific parasite genotype, but mortality-density thresholds and time to death differed. A lethality threshold of 40% mortality was reached with 10 spores liter ؊1 for Chinook but only 5 spores liter ؊1 for coho. Parasite density did not affect degree-days to death for Chinook but was negatively correlated for coho, and there was wider variation among coho individuals. These differences likely reflect the different life histories and genetic heterogeneity of the salmon populations. Direct quantification of the density of host-specific parasite genotypes in water samples offers a management tool for predicting host population-level impacts.
Wnt signals have been shown to be involved in multiple steps of vertebrate neural patterning, yet the relative contributions of individual Wnts to the process of brain regionalization is poorly understood. Wnt1 has been shown in the mouse to be required for the formation of the midbrain and the anterior hindbrain, but this function of wnt1 has not been explored in other model systems. Further, wnt1 is part of a Wnt cluster conserved in all vertebrates comprising wnt1 and wnt10b, yet the function of wnt10b during embryogenesis has not been explored. Here, we report that in zebrafish wnt10b is expressed in a pattern overlapping extensively with that of wnt1. We have generated a deficiency allele for these closely linked loci and performed morpholino antisense oligo knockdown to show that wnt1 and wnt10b provide partially redundant functions in the formation of the midbrain-hindbrain boundary (MHB). When both loci are deleted, the expression of pax2.1, en2, and her5 is lost in the ventral portion of the MHB beginning at the 8-somite stage. However, wnt1 and wnt10b are not required for the maintenance of fgf8, en3, wnt8b, or wnt3a expression. Embryos homozygous for the wnt1-wnt10b deficiency display a mild MHB phenotype, but are sensitized to reductions in either Pax2.1 or Fgf8; that is, in combination with mutant alleles of either of these loci, the morphological MHB is lost. Thus, wnt1 and wnt10b are required to maintain threshold levels of Pax2.1 and Fgf8 at the MHB.
During vertebrate mesoderm formation, fates are established according to position in the dorsoventral (D/V) axis of the embryo. Initially, maternal signaling divides nascent mesoderm into axial (dorsal) and non-axial (ventral) domains. Although the subsequent subdivision of non-axial mesoderm into multiple D/V fate domains is known to involve zygotic Wnt8 and BMP signaling as well as the Vent/Vox/Ved family of transcriptional repressors, how levels of signaling activity are translated into differential regulation of fates is not well understood. To address this question, we have analyzed zebrafish embryos lacking Wnt8 and BMP2b. Zebrafish wnt8; swr (bmp2b) double mutants display a progressive loss of non-axial mesoderm and a concomitant expansion of axial mesoderm during gastrulation. Mesoderm induction and specification of the axial domain occur normally in wnt8; swr mutants, but dorsal mesoderm genes eventually come to be expressed throughout the mesoderm, suggesting that the establishment of non-axial mesoderm identity requires continual repression of dorsal mesoderm factors, including repressors of ventral genes. Loss-of-function for Vent, Vox, and Ved phenocopies the wnt8; swr mutant phenotype, consistent with Wnt8 and BMP2b maintaining non-axial mesoderm identity during gastrulation through the regulation of these three transcriptional repressors. We postulate that timely differentiation of the mesoderm requires the maintenance of non-axial mesoderm identity by Wnt8 and BMP2b at the onset of gastrulation followed by subdivision of the non-axial mesoderm into different functional domains during gastrulation.
The vertebrate hindbrain develops from a series of segments (rhombomeres) distributed along the anteroposterior axis. We are studying the roles of Wnt and Delta-Notch signaling in maintaining rhombomere boundaries as organizing centers in the zebrafish hindbrain. Several wnt genes (wnt1, wnt3a, wnt8b, and wnt10b) show elevated expression at rhombomere boundaries, whereas several delta genes (dlA, dlB, and dlD) are expressed in transverse stripes flanking rhombomere boundaries. Partial disruption of Wnt signaling by knockdown of multiple wnt genes, or the Wnt mediator tcf3b, ablates boundaries and associated cell types. Expression of dlA is chaotic, and cell types associated with rhombomere centers are disorganized. Similar patterning defects are observed in segmentation mutants spiel-ohne-grenzen (spg) and valentino (val), which fail to form rhombomere boundaries due to faulty interactions between adjacent rhombomeres. Stripes of wnt expression are variably disrupted, with corresponding disturbances in metameric patterning. Mutations in dlA or mind bomb (mib) disrupt Delta-Notch signaling and cause a wide range of patterning defects in the hindbrain. Stripes of wnt1 are initially normal but subsequently dissipate, and metameric patterning becomes increasingly disorganized. Driving wnt1 expression using a heat-shock construct partially rescues metameric patterning in mib mutants. Thus, rhombomere boundaries act as Wnt signaling centers required for precise metameric patterning, and Delta signals from flanking cells provide feedback to maintain wnt expression at boundaries. Similar feedback mechanisms operate in the Drosophila wing disc and vertebrate limb bud, suggesting coaptation of a conserved signaling module that spatially organizes cells in complex organ systems.
Isolation, detection with diagnostic polymerase chain reaction (PCR), and microscopy demonstrated the presence of Phytophthora ramorum in the sapwood of mature, naturally infected tanoak (Lithocarpus densiflorus) trees. The pathogen was strongly associated with discolored sapwood (P < 0.001), and was recovered or detected from 83% of discolored sapwood tissue samples. Hyphae were abundant in the xylem vessels, ray parenchyma, and fiber tracheids. Chlamydospores were observed in the vessels. Studies of log inoculation indicated that P. ramorum readily colonized sapwood from inoculum placed in the bark, cambium, or sapwood. After 8 weeks, radial spread of P. ramorum in sapwood averaged 3.0 to 3.3 cm and axial spread averaged 12.4 to 18.8 cm. A field study was conducted to determine if trees with infected xylem had reduced sap flux and reduced specific conductivity relative to noninfected control trees. Sap flux was monitored with heat-diffusion sensors and tissue samples near the sensors were subsequently tested for P. ramorum. Adjacent wood sections were excised and specific conductivity measured. Both midday sap flux and specific conductivity were significantly reduced in infected trees versus noninfected control trees. Vessel diameter distributions did not differ significantly among the two treatments, but tyloses were more abundant in infected than in noninfected trees. Implications for pathogenesis, symptomology, and epidemiology are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.