Background Extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC), plasmid-mediated AmpCproducing E coli (pAmpC-EC), and other bacteria are resistant to important β-lactam antibiotics. ESBL-EC and pAmpC-EC are increasingly reported in animals, food, the environment, and community-acquired and health-careassociated human infections. These infections are usually preceded by asymptomatic carriage, for which attributions to animal, food, environmental, and human sources remain unquantified. Methods In this population-based modelling study, we collected ESBL and pAmpC gene data on the Netherlands population for 2005-17 from published datasets of gene occurrences in E coli isolates from different sources, and from partners of the ESBL Attribution Consortium and the Dutch National Antimicrobial Surveillance System. Using these data, we applied an established source attribution model based on ESBL-EC and pAmpC-EC prevalence and gene data for humans, including high-risk populations (ie, returning travellers, clinical patients, farmers), farm and companion animals, food, surface freshwater, and wild birds, and human exposure data, to quantify the overall and gene-specific attributable sources of community-acquired ESBL-EC and pAmpC-EC intestinal carriage. We also used a simple transmission model to determine the basic reproduction number (R 0) in the open community. Findings We identified 1220 occurrences of ESBL-EC and pAmpC-EC genes in humans, of which 478 were in clinical patients, 454 were from asymptomatic carriers in the open community, 103 were in poultry and pig farmers, and 185 were in people who had travelled out of the region. We also identified 6275 occurrences in non-human sources, including 479 in companion animals, 4026 in farm animals, 66 in wild birds, 1430 from food products, and 274 from surface freshwater. Most community-acquired ESBL-EC and pAmpC-EC carriage was attributed to human-to-human transmission within or between households in the open community (60•1%, 95% credible interval 40•0-73•5), and to secondary transmission from high-risk groups (6•9%, 4•1-9•2). Food accounted for 18•9% (7•0-38•3) of carriage, companion animals for 7•9% (1•4-19•9), farm animals (non-occupational contact) for 3•6% (0•6-9•9), and swimming in freshwater and wild birds (ie, environmental contact) for 2•6% (0•2-8•7). We derived an R 0 of 0•63 (95% CI 0•42-0•77) for intracommunity transmission. Interpretation Although humans are the main source of community-acquired ESBL-EC and pAmpC-EC carriage, the attributable non-human sources underpin the need for longitudinal studies and continuous monitoring, because intracommunity ESBL-EC and pAmpC-EC spread alone is unlikely to be self-maintaining without transmission to and from non-human sources.
Our 'One Health' approach provides an integrated evaluation of the molecular relatedness of ESBL/AmpC-EC from numerous sources. The analysis showed distinguishable ESBL/AmpC-EC transmission cycles in different hosts and failed to demonstrate a close epidemiological linkage of ESBL/AmpC genes and plasmid replicon types between livestock farms and people in the general population.
Background ESBL-producing Enterobacteriaceae (ESBL-E) are observed in many reservoirs. Pets might play an important role in the dissemination of ESBL-E to humans since they live closely together. Objectives To identify prevalence, risk factors, molecular characteristics, persistence and acquisition of ESBL-E in dogs and cats, and co-carriage in human–pet pairs belonging to the same household. Methods In a nationwide study, one person per household was randomly invited to complete a questionnaire and to submit a faecal sample. Dog and cat owners were invited to also submit a faecal sample from their pet. Repeated sampling after 1 and 6 months was performed in a subset. ESBL-E were obtained through selective culture and characterized by WGS. Logistic regression analyses and random forest models were performed to identify risk factors. Results The prevalence of ESBL-E carriage in these cohorts was 3.8% (95% CI: 2.7%–5.4%) for human participants (n=550), 10.7% (95% CI: 8.3%–13.7%) for dogs (n=555) and 1.4% (95% CI: 0.5%–3.8%) for cats (n=285). Among animals, blaCTX-M-1 was most abundant, followed by blaCTX-M-15. In dogs, persistence of carriage was 57.1% at 1 month and 42.9% at 6 months. Eating raw meat [OR: 8.8, 95% CI: 4.7–16.4; population attributable risk (PAR): 46.5%, 95% CI: 41.3%–49.3%] and dry food (OR: 0.2, 95% CI: 0.1–0.5; PAR: 56.5%, 95% CI: 33.2%–66.6%) were predictors for ESBL-E carriage in dogs. Human–dog co-carriage was demonstrated in five households. Human–cat co-carriage was not observed. Conclusions ESBL-E prevalence was higher in dogs than in humans and lowest in cats. The main risk factor for ESBL-E carriage was eating raw meat. Co-carriage in dogs and household members was uncommon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.